A030056 a(n) = binomial(2*n+1, n-6).
1, 15, 136, 969, 5985, 33649, 177100, 888030, 4292145, 20160075, 92561040, 417225900, 1852482996, 8122425444, 35240152720, 151532656696, 646626422970, 2741188875414, 11554258485616, 48459472266975
Offset: 6
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 6..500
- Milan Janjic, Two Enumerative Functions.
Programs
-
Mathematica
Table[Binomial[2*n + 1, n - 6], {n, 6, 25}] (* Amiram Eldar, Jan 24 2022 *)
-
Python
from _future_ import division A030056_list, b = [], 1 for n in range(6,501): A030056_list.append(b) b = b*(2*n+2)*(2*n+3)//((n-5)*(n+8)) # Chai Wah Wu, Jan 26 2016
Formula
a(n+1) = a(n)*(2*n+2)*(2*n+3)/((n-5)*(n+8)). - Chai Wah Wu, Jan 26 2016
From Amiram Eldar, Jan 24 2022: (Start)
Sum_{n>=6} 1/a(n) = 40*Pi/(9*sqrt(3)) - 96827/13860.
Sum_{n>=6} (-1)^n/a(n) = 29248*log(phi)/(5*sqrt(5)) - 3486955/2772, where phi is the golden ratio (A001622). (End)