This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A030063 #46 Apr 03 2022 09:56:40 %S A030063 0,1,3,8,120 %N A030063 Fermat's Diophantine m-tuple: 1 + the product of any two distinct terms is a square. %C A030063 Baker and Davenport proved that no other positive integer can replace 120 and still preserve the property that 1 + the product of any two distinct terms is a square. In particular, the sequence cannot be extended to another integer term. However, it can be extended to another rational term - see A192629. - _Jonathan Sondow_, Jul 11 2011 %C A030063 It is conjectured that there do not exist five strictly positive integers with the property that 1 + the product of any two distinct terms is a square. (See Dujella's links.) - _Jonathan Sondow_, Apr 04 2013 %C A030063 Other such quadruples can be generated using the formula F(2n), F(2n + 2), F(2n + 4) and F(2n + 1)F(2n + 2)F(2n + 3) given in Koshy's book. - _Alonso del Arte_, Jan 18 2011 %C A030063 Other such quadruples are generated by Euler's formula a, b, a+b+2*r, 4*r*(r+a)*(r+b), where 1+a*b = r^2. %C A030063 Seems to be equivalent to: 1 + the product of any two distinct terms is a perfect power. Tested up to 10^10. - _Robert C. Lyons_, Jun 30 2016 %C A030063 Seems to be equivalent to: 1 + the product of any two distinct terms is a powerful number. Tested up to 1.2*10^9. - _Robert C. Lyons_, Jun 30 2016 %D A030063 M. Gardner, "Mathematical Magic Show", M. Gardner, Alfred Knopf, New York, 1977, pp. 210, 221-222. %D A030063 Thomas Koshy, "Fibonacci and Lucas Numbers and Applications", Wiley, New York, 2001, pp. 93-94. %H A030063 A. Baker and H. Davenport, <a href="http://dx.doi.org/10.1093/qmath/20.1.129">The Equations 3x^2-2=y^2 and 8x^2-7=z^2</a>, Quart. J. Math. Oxford 20 (1969). %H A030063 Nicolae Ciprian Bonciocat, Mihai Cipu, and Maurice Mignotte, <a href="https://arxiv.org/abs/2010.09200">There is no Diophantine D(-1)--quadruple</a>, arXiv:2010.09200 [math.NT], 2020. %H A030063 Andrej Dujella, <a href="https://web.math.pmf.unizg.hr/~duje/dtuples.html">Diophantine m-tuples</a> %H A030063 Z. Franusic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Franusic/franusic4.html">On the Extension of the Diophantine Pair {1,3} in Z[surd d]</a>, J. Int. Seq. 13 (2010) # 10.9.6 %H A030063 Zrinka Franušić, <a href="http://atlas-conferences.com/cgi-bin/abstract/cbbv-23">On the extension of the Diophantine pair {1, 3} in Z[√d]</a>, Journées Arithmétiques 2011. [Dead link] %H A030063 Yasutsugu Fujita, <a href="http://dx.doi.org/10.1016/j.jnt.2009.01.001">Any Diophantine quintuple contains a regular Diophantine quadruple</a>, Journal of Number Theory, Volume 129, Issue 7, July 2009, Pages 1678-1697. %H A030063 Martin Gardner, Mathematical diversions, Scientific American 216 (1967), <a href="https://www.jstor.org/stable/24931439">March 1967</a>, p. 124; <a href="https://www.jstor.org/stable/24931474">April 1967</a>, p. 119. %Y A030063 Cf. A192629, A192630, A192631, A192632. %K A030063 nonn,fini,full,nice %O A030063 0,3 %A A030063 Graham Lewis (grahaml(AT)levygee.com.uk) %E A030063 Definition clarified by _Jonathan Sondow_, Jul 06 2011