This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A030087 #27 May 06 2022 13:13:51 %S A030087 2,3,7,43,47,53,157,223,263,487,577,587,823,4657,5657,6653,7177,8287, %T A030087 9343,26777,36293,46477,58787,72727,75707,176777,363313,530353,566653, %U A030087 959953,1771787,2525557,2555353,2626277,3656363,4414447,7110707,8448343,20700077,54475457,71117177,72722977,135135113,393321293,457887457,505053053,672722627 %N A030087 Primes such that digits of p do not appear in p^3. %C A030087 Primes of sequence A029785. - _Michel Marcus_, Jan 04 2015 %H A030087 Michael S. Branicky, <a href="/A030087/b030087.txt">Table of n, a(n) for n = 1..86</a> (terms < 10^19; terms 74..86 via A029785) %e A030087 2 and 2^3=8 have no digits in common, hence 2 is in the sequence. %t A030087 Select[Prime[Range[1500000]], Intersection[IntegerDigits[#], IntegerDigits[#^3]]=={} &] (* _Vincenzo Librandi_, Jan 04 2015 *) %o A030087 (PARI) lista(nn) = {forprime (n=1, nn, if (#setintersect(Set(vecsort(digits(n^3))), Set(vecsort(digits(n)))) == 0, print1(n, ", ")); ); } \\ _Michel Marcus_, Jan 04 2015 %o A030087 (Python) %o A030087 from sympy import isprime %o A030087 A030087_list = [n for n in range(1,10**6) if set(str(n)) & set(str(n**3)) == set() and isprime(n)] %o A030087 # _Chai Wah Wu_, Jan 05 2015 %Y A030087 Cf. A029785 (digits of n are not present in n^3), A030086 (similar, with p^2), A253574 (similar, with p^4). %K A030087 nonn,base %O A030087 1,1 %A A030087 _Patrick De Geest_, Dec 11 1999 %E A030087 Changed offset from 0 to 1 and more terms from _Vincenzo Librandi_, Jan 04 2015 %E A030087 a(40)-a(47) from _Chai Wah Wu_, Jan 05 2015