This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A030129 #32 Feb 16 2025 08:32:35 %S A030129 1,0,1,0,0,0,1,0,1,0,0,0,2,0,80,0,0,0,11084874829,0,14796207517873771 %N A030129 Number of nonisomorphic Steiner triple systems (STS's) S(2,3,n) on n points. %C A030129 a(n) also counts the following objects: %C A030129 isomorphism classes of idempotent totally symmetric Latin squares of order n, %C A030129 isotopism classes containing idempotent totally symmetric Latin squares of order n, %C A030129 species containing idempotent totally symmetric Latin squares of order n, %C A030129 isomorphism classes of totally symmetric loops of order n+1, %C A030129 isomorphism classes of totally symmetric unipotent Latin squares of order n+1, %C A030129 isomorphism classes containing totally symmetric reduced Latin squares of order n+1, %C A030129 isotopism classes containing totally symmetric unipotent Latin squares of order n+1, %C A030129 isotopism classes containing totally symmetric reduced Latin squares of order n+1, %C A030129 species containing totally symmetric unipotent Latin squares of order n+1, and %C A030129 species containing totally symmetric reduced Latin squares of order n+1. %D A030129 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 304. %D A030129 CRC Handbook of Combinatorial Designs, 1996, p. 70. %H A030129 Daniel Heinlein and Patric R. J. Östergård, <a href="https://arxiv.org/abs/2303.01207">Enumerating Steiner Triple Systems</a>, arXiv:2303.01207 [math.CO], 2023. %H A030129 Petteri Kaski and Patric R. J. Östergård (Patric.Ostergard(AT)hut.fi), <a href="http://www.tcs.hut.fi/~pkaski/sts19.ps">The Steiner triple systems of order 19</a>. %H A030129 Petteri Kaski and Patric R. J. Östergård, <a href="https://doi.org/10.1090/S0025-5718-04-01626-6">The Steiner triple systems of order 19</a>, Mathematics of Computation, Vol. 73, No. 248 (Oct., 2004), pp. 2075-2092. %H A030129 Brendan D. McKay and Ian M. Wanless, <a href="https://doi.org/10.1002/jcd.21814">Enumeration of Latin squares with conjugate symmetry</a>, J. Combin. Des. 30 (2022), 105-130. %H A030129 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SteinerTripleSystem.html">Steiner Triple System</a>. %H A030129 <a href="/index/St#Steiner">Index entries for sequences related to Steiner systems</a>. %Y A030129 Cf. A001201, A030128, A051390, A124118, A124119, A076019. %K A030129 nonn,nice,hard,more %O A030129 1,13 %A A030129 _Eric W. Weisstein_