This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A030133 #35 Sep 25 2019 07:48:08 %S A030133 2,1,3,4,7,2,9,2,2,4,6,1,7,8,6,5,2,7,9,7,7,5,3,8,2,1,3,4,7,2,9,2,2,4, %T A030133 6,1,7,8,6,5,2,7,9,7,7,5,3,8,2,1,3,4,7,2,9,2,2,4,6,1,7,8,6,5,2,7,9,7, %U A030133 7,5,3,8,2,1,3,4,7,2,9,2,2,4,6,1,7,8,6,5,2,7,9,7,7,5,3,8,2,1,3 %N A030133 a(n+1) is the sum of digits of (a(n) + a(n-1)). %C A030133 a(n) = A010888(A000032(n)). - _Reinhard Zumkeller_, Aug 20 2011 %C A030133 Similar to the digital roots of several Fibonacci sequences, this digital root sequence for Lucas numbers (A000032) has period 24 with digits summing to 117. %C A030133 Decimal expansion of 23719213606865169775282 / 111111111111111111111111 = 0.[213472922461786527977538] (periodic). - _Daniel Forgues_, Feb 27 2017 %H A030133 Reinhard Zumkeller, <a href="/A030133/b030133.txt">Table of n, a(n) for n = 0..10000</a> %H A030133 <a href="/index/Rec#order_24">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1). %F A030133 a(n+24) = a(n); a(A017593(n)) = 9. - _Reinhard Zumkeller_, Jul 04 2007 %F A030133 G.f.: (2 + x + 3*x^2 + 4*x^3 + 7*x^4 + 2*x^5 + 9*x^6 + 2*x^7 + 2*x^8 + 4*x^9 + 6*x^10 + x^11 + 7*x^12 + 8*x^13 + 6*x^14 + 5*x^15 + 2*x^16 + 7*x^17 + 9*x^18 + 7*x^19 + 7*x^20 + 5*x^21 + 3*x^22 + 8*x^23) / (1 - x^24). - _Colin Barker_, Sep 25 2019 %t A030133 Transpose[NestList[{Last[#],Total[IntegerDigits[Total[#]]]}&, {2,1}, 100]] [[1]] (* _Harvey P. Dale_, Jul 25 2011 *) %o A030133 (Haskell) %o A030133 a030133 n = a030133_list !! n %o A030133 a030133_list = %o A030133 2 : 1 : map a007953 (zipWith (+) a030133_list $ tail a030133_list) %o A030133 -- _Reinhard Zumkeller_, Aug 20 2011 %o A030133 (PARI) V=[2,1];for(n=1,100,V=concat(V,sumdigits(V[n]+V[n+1])));V \\ _Derek Orr_, Feb 27 2017 %o A030133 (PARI) Vec((2 + x + 3*x^2 + 4*x^3 + 7*x^4 + 2*x^5 + 9*x^6 + 2*x^7 + 2*x^8 + 4*x^9 + 6*x^10 + x^11 + 7*x^12 + 8*x^13 + 6*x^14 + 5*x^15 + 2*x^16 + 7*x^17 + 9*x^18 + 7*x^19 + 7*x^20 + 5*x^21 + 3*x^22 + 8*x^23) / (1 - x^24) + O(x^80)) \\ _Colin Barker_, Sep 25 2019 %Y A030133 Cf. A030132, A007953, A049341. %K A030133 nonn,base,nice,easy %O A030133 0,1 %A A030133 _N. J. A. Sloane_