cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030194 a(0)=0; a(n) is the smallest m such that m - a(i) is not a triangular number for any i < n.

This page as a plain text file.
%I A030194 #17 Oct 05 2020 15:48:49
%S A030194 0,2,4,9,11,13,18,20,22,27,29,31,51,53,60,62,69,71,85,94,101,103,110,
%T A030194 112,141,143,150,152,159,161,168,170,211,220,229,245,267,269,292,299,
%U A030194 301,308,310,317,319,326,348,357,359,366,368,375,418,427,456,458,499,508
%N A030194 a(0)=0; a(n) is the smallest m such that m - a(i) is not a triangular number for any i < n.
%D A030194 A. Sárközy. On the difference sets of sequences of integers II, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 21(1978), 45-53.
%H A030194 Hugo Pfoertner, <a href="/A030194/b030194.txt">Table of n, a(n) for n = 0..10000</a>
%H A030194 I. Ruzsa, <a href="http://dx.doi.org/10.1007/BF02454169">Difference sets without squares</a>, Period. Math. Hungar. 15 (1984), no. 3, 205-209.
%H A030194 A. Sárközy, <a href="http://dx.doi.org/10.1007/BF01896079">On difference sets of sequences of integers I</a>, Acta Mathematica Academiae Scientiarum Hungarica, March 1978, Volume 31, Issue 1, pp 125-149.
%H A030194 A. Sárközy, <a href="http://dx.doi.org/10.1007/BF01901984">On difference sets of sequences of integers III</a>, Acta Mathematica Academiae Scientiarum Hungarica, September 1978, Volume 31, Issue 3, pp 355-386.
%o A030194 (PARI) a030194(upto)={my(a=vector(upto));a[1]=2;for(n=2,upto,for(m=a[n-1]+1,oo,my(f=1);for(j=1,n,if(ispolygonal(m-a[j],3),f=0;break));if(f,a[n]=m;break)));concat([0],a)};
%o A030194 a030194(57) \\ _Hugo Pfoertner_, Oct 05 2020
%Y A030194 Cf. A000217, A082183, A336531.
%K A030194 nonn
%O A030194 0,2
%A A030194 _Jan Kristian Haugland_
%E A030194 Name edited by _Michel Marcus_, Oct 05 2020
%E A030194 More terms from _Hugo Pfoertner_, Oct 05 2020