cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030229 Numbers that are the product of an even number of distinct primes.

This page as a plain text file.
%I A030229 #120 Jul 22 2025 18:20:43
%S A030229 1,6,10,14,15,21,22,26,33,34,35,38,39,46,51,55,57,58,62,65,69,74,77,
%T A030229 82,85,86,87,91,93,94,95,106,111,115,118,119,122,123,129,133,134,141,
%U A030229 142,143,145,146,155,158,159,161,166,177,178,183,185,187,194,201,202,203,205,206,209,210,213,214
%N A030229 Numbers that are the product of an even number of distinct primes.
%C A030229 These are the positive integers k with moebius(k) = 1 (cf. A008683). - _N. J. A. Sloane_, May 18 2021
%C A030229 From _Enrique Pérez Herrero_, Jul 06 2012: (Start)
%C A030229 This sequence and A030059 form a partition of the squarefree numbers set: A005117.
%C A030229 Also solutions to equation mu(n)=1.
%C A030229 Sum_{n>=1} 1/a(n)^s = (Zeta(s)^2 + Zeta(2*s))/(2*Zeta(s)*Zeta(2*s)).
%C A030229 (End)
%C A030229 A008683(a(n)) = 1; a(A220969(n)) mod 2 = 0; a(A220968(n)) mod 2 = 1. - _Reinhard Zumkeller_, Dec 27 2012
%C A030229 Characteristic function for values of a(n) = (mu(n)+1)! - 1, where mu(n) is the Mobius function (A008683). - _Wesley Ivan Hurt_, Oct 11 2013
%C A030229 Conjecture: For the matrix M(i,j) = 1 if j|i and 0 otherwise, Inverse(M)(a,1) = -1, for any a in this sequence. - _Benedict W. J. Irwin_, Jul 26 2016
%C A030229 Solutions to the equation Sum_{d|n} mu(d)*d = Sum_{d|n} mu(n/d)*d. - _Torlach Rush_, Jan 13 2018
%C A030229 Solutions to the equation Sum_{d|n} mu(d)*sigma(d) = n, where sigma(n) is the sum of divisors function (A000203). - _Robert D. Rosales_, May 20 2024
%C A030229 From _Peter Munn_, Oct 04 2019: (Start)
%C A030229 Numbers n such that omega(n) = bigomega(n) = 2*k for some integer k.
%C A030229 The squarefree numbers in A000379.
%C A030229 The squarefree numbers in A028260.
%C A030229 This sequence is closed with respect to the commutative binary operation A059897(.,.), thus it forms a subgroup of the positive integers under A059897(.,.). A006094 lists a minimal set of generators for this subgroup. The lexicographically earliest ordered minimal set of generators is A100484 with its initial 4 removed.
%C A030229 (End)
%C A030229 The asymptotic density of this sequence is 3/Pi^2 (cf. A104141). - _Amiram Eldar_, May 22 2020
%D A030229 B. C. Berndt and R. A. Rankin, Ramanujan: Letters and Commentary, see p. 23; AMS Providence RI 1995
%D A030229 S. Ramanujan, Collected Papers, pp. xxiv, 21.
%H A030229 T. D. Noe, <a href="/A030229/b030229.txt">Table of n, a(n) for n = 1..1000</a>
%H A030229 Debmalya Basak, Nicolas Robles, and Alexandru Zaharescu, <a href="https://arxiv.org/abs/2312.17435">Exponential sums over Möbius convolutions with applications to partitions</a>, arXiv:2312.17435 [math.NT], 2023. Mentions this sequence.
%H A030229 S. Ramanujan, <a href="http://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/Cpaper4/page1.htm">Irregular numbers</a>, J. Indian Math. Soc. 5 (1913) 105-106.
%H A030229 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeFactor.html">Prime Factor</a>
%H A030229 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MoebiusFunction.html">Moebius Function</a>
%H A030229 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeSums.html">Prime Sums</a>
%H A030229 H. S. Wilf, <a href="https://www.jstor.org/stable/2323497">A Greeting; and a view of Riemann's Hypothesis</a>, Amer. Math. Monthly, 94:1 (1987), 3-6.
%F A030229 a(n) < n*Pi^2/3 infinitely often; a(n) > n*Pi^2/3 infinitely often. - _Charles R Greathouse IV_, Oct 04 2011; corrected Sep 07 2017
%F A030229 {a(n)} = {m : m = A059897(A030059(k), p), k >= 1} for prime p, where {a(n)} denotes the set of integers in the sequence. - _Peter Munn_, Oct 04 2019
%e A030229 (empty product), 2*3, 2*5, 2*7, 3*5, 3*7, 2*11, 2*13, 3*11, 2*17, 5*7, 2*19, 3*13, 2*23,...
%p A030229 a := n -> `if`(numtheory[mobius](n)=1,n,NULL); seq(a(i),i=1..214); # _Peter Luschny_, May 04 2009
%p A030229 with(numtheory); t := [ ]: f := [ ]: for n from 1 to 250 do if mobius(n) = 1 then t := [ op(t), n ] else f := [ op(f), n ]; fi; od: t; # _Wesley Ivan Hurt_, Oct 11 2013
%p A030229 # alternative
%p A030229 A030229 := proc(n)
%p A030229     option remember;
%p A030229     local a;
%p A030229     if n = 1 then
%p A030229         1;
%p A030229     else
%p A030229         for a from procname(n-1)+1 do
%p A030229             if numtheory[mobius](a) = 1 then
%p A030229                 return a;
%p A030229             end if;
%p A030229         end do:
%p A030229     end if;
%p A030229 end proc:
%p A030229 seq(A030229(n),n=1..40) ; # _R. J. Mathar_, Sep 22 2020
%t A030229 Select[Range[214], MoebiusMu[#] == 1 &] (* _Jean-François Alcover_, Oct 04 2011 *)
%o A030229 (PARI) isA030229(n)= #(n=factor(n)[,2]) % 2 == 0 && (!n || vecmax(n)==1 )
%o A030229 (PARI) is(n)=moebius(n)==1 \\ _Charles R Greathouse IV_, Jan 31 2017
%o A030229 for(n=1,500, isA030229(n)&print1(n",")) \\ _M. F. Hasler_
%o A030229 (Haskell)
%o A030229 import Data.List (elemIndices)
%o A030229 a030229 n = a030229_list !! (n-1)
%o A030229 a030229_list = map (+ 1) $ elemIndices 1 a008683_list
%o A030229 -- _Reinhard Zumkeller_, Dec 27 2012
%o A030229 (Python)
%o A030229 from math import isqrt, prod
%o A030229 from sympy import primerange, integer_nthroot, primepi
%o A030229 def A030229(n):
%o A030229     def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
%o A030229     def f(x): return int(n-1+x-sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,i)) for i in range(2,x.bit_length(),2)))
%o A030229     kmin, kmax = 0,1
%o A030229     while f(kmax) > kmax:
%o A030229         kmax <<= 1
%o A030229     while kmax-kmin > 1:
%o A030229         kmid = kmax+kmin>>1
%o A030229         if f(kmid) <= kmid:
%o A030229             kmax = kmid
%o A030229         else:
%o A030229             kmin = kmid
%o A030229     return kmax # _Chai Wah Wu_, Aug 29 2024
%Y A030229 A006881, A046386, A067885, A123322, A281222 are subsequences.
%Y A030229 Cf. A000379, A005117, A008683, A028260, A030059, A104141, A151797, A245630.
%K A030229 nonn,easy,nice
%O A030229 1,2
%A A030229 _David W. Wilson_