This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A030272 #31 Sep 19 2020 03:39:42 %S A030272 1,1,1,1,1,1,2,1,1,3,1,1,3,4,6,6,7,6,20,18,21,42,55,52,80,126,140,201, %T A030272 323,361,600,626,938,1387,1648,2310,3620,4575,5495,9278,11239,14229, %U A030272 23406,28780,38218,53987,73114,87568,134007,181986,233004,348230,432184 %N A030272 Number of partitions of n^3 into distinct cubes. %H A030272 Alois P. Heinz, <a href="/A030272/b030272.txt">Table of n, a(n) for n = 0..180</a> %F A030272 a(n) = [x^(n^3)] Product_{k>=1} (1 + x^(k^3)). - _Ilya Gutkovskiy_, Apr 13 2017 %F A030272 a(n) = A279329(n^3). - _Vaclav Kotesovec_, May 06 2019 %F A030272 a(n) ~ exp(2^(7/4) * 3^(-3/2) * ((2^(1/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/4) * n^(3/4)) * ((2^(1/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/8) / (2^(17/8) * 3^(1/4) * sqrt(Pi) * n^(21/8)). - _Vaclav Kotesovec_, May 06 2019 %e A030272 a(6) = 2: [27,64,125], [216]. %e A030272 a(9) = 3: [1,27,64,125,512], [1,216,512], [729]. %t A030272 nmax = 50; poly = ConstantArray[0, nmax^3 + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += poly[[j - k^3 + 1]], {j, nmax^3, k^3, -1}];, {k, 2, nmax}]; Table[poly[[1 + n^3]], {n, 0, nmax}] (* _Vaclav Kotesovec_, Sep 19 2020 *) %o A030272 (PARI) apply( A030272(n)=A279329(n^3), [0..30]) \\ _M. F. Hasler_, Jan 05 2020 %Y A030272 Cf. A000009, A003108, A033461, A259792, A279329. %K A030272 nonn %O A030272 0,7 %A A030272 _Warren D. Smith_ %E A030272 a(0)=1 prepended by _Ilya Gutkovskiy_, Apr 13 2017