This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A030273 #31 Apr 14 2017 03:33:38 %S A030273 1,1,1,1,1,2,1,2,1,3,3,4,2,7,8,12,13,16,25,28,55,51,91,90,158,176,288, %T A030273 297,487,521,847,908,1355,1580,2175,2744,3636,4452,5678,7385,9398, %U A030273 11966,14508,19322,23065,31301,36177,49080,57348,77446,91021,121113,141805 %N A030273 Number of partitions of n^2 into distinct squares. %H A030273 Alois P. Heinz and Vaclav Kotesovec, <a href="/A030273/b030273.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..750 from Alois P. Heinz) %F A030273 a(n) = [x^(n^2)] Product_{k>=1} (1 + x^(k^2)). - _Ilya Gutkovskiy_, Apr 13 2017 %p A030273 b:= proc(n, i) option remember; `if`(n=0, 1, %p A030273 `if`(n>i*(i+1)*(2*i+1)/6, 0, b(n, i-1)+ %p A030273 `if`(i^2>n, 0, b(n-i^2, i-1)))) %p A030273 end: %p A030273 a:= n-> b(n^2, n): %p A030273 seq(a(n), n=0..50); # _Alois P. Heinz_, Nov 20 2012 %t A030273 b[n_, i_] := b[n, i] = If[n==0, 1, If[n > i*(i+1)*(2*i+1)/6, 0, b[n, i-1] +If[i^2 > n, 0, b[n-i^2, i-1]]]]; a[n_] := b[n^2, n]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Jul 30 2015, after _Alois P. Heinz_ *) %o A030273 (Haskell) %o A030273 a030273 n = p (map (^ 2) [1..]) (n^2) where %o A030273 p _ 0 = 1 %o A030273 p (k:ks) m | m < k = 0 %o A030273 | otherwise = p ks (m - k) + p ks m %o A030273 -- _Reinhard Zumkeller_, Aug 14 2011 %Y A030273 Cf. A037444, A033461, A000009, A000290. %K A030273 nonn %O A030273 0,6 %A A030273 _Warren D. Smith_ %E A030273 a(0)=1 prepended by _Alois P. Heinz_, Feb 18 2015