cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030303 Position of n-th 1 in A030302.

This page as a plain text file.
%I A030303 #51 Dec 16 2024 06:36:58
%S A030303 1,2,4,5,6,9,11,12,13,15,16,17,18,22,25,26,28,30,32,33,34,35,38,39,41,
%T A030303 42,43,44,46,47,48,49,50,55,59,60,63,65,68,69,70,72,75,77,79,80,82,83,
%U A030303 85,87,88,89,90,91,95,96,99,100,101,103,105,106,108,109,110,111,112,115,116,117,119,120
%N A030303 Position of n-th 1 in A030302.
%C A030303 Partial sums of A066099; also positions of 1's in the Champernowne word A030190 which therefore is the characteristic function of this sequence seen as a set. The graph of this sequence has a self-similar shape with increasingly important "cusps" at indices given by A005183, which also indexes records in A066099. - _M. F. Hasler_, Oct 12 2020
%H A030303 Reinhard Zumkeller, <a href="/A030303/b030303.txt">Table of n, a(n) for n = 1..10000</a>
%F A030303 A030190(a(n)) = 1. - _Reinhard Zumkeller_, Dec 11 2011
%F A030303 a(n) = Sum_{k=1..n} A066099(k). - _M. F. Hasler_, Oct 12 2020
%t A030303 Flatten[Position[Flatten[IntegerDigits[Range[30],2]],1]] (* _Harvey P. Dale_, Jan 04 2015 *)
%o A030303 (Haskell)
%o A030303 import Data.List (elemIndices)
%o A030303 a030303 n = a030303_list !! n
%o A030303 a030303_list = elemIndices 1 a030190_list
%o A030303 -- _Reinhard Zumkeller_, Dec 11 2011
%o A030303 (PARI) select(t->t,concat([binary(n)|n<-[1..30]]),1) \\ _M. F. Hasler_, Oct 10 2020
%o A030303 (Python)
%o A030303 from itertools import count, islice
%o A030303 def A030303_gen(): # generator of terms
%o A030303     return (i + 1 for i, s in enumerate(d for n in count(1) for d in bin(n)[2:]) if s == '1')
%o A030303 A030303_list = list(islice(A030303_gen(),30)) # _Chai Wah Wu_, Feb 18 2022
%Y A030303 Cf. A030190, A030302, A003607, A066099.
%K A030303 nonn,base
%O A030303 1,2
%A A030303 _Clark Kimberling_
%E A030303 More terms from _M. F. Hasler_, Oct 12 2020