cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030437 Decimal expansion of x such that x^x = Pi.

This page as a plain text file.
%I A030437 #26 Nov 29 2024 13:38:09
%S A030437 1,8,5,4,1,0,5,9,6,7,9,2,1,0,2,6,4,3,2,7,4,8,3,7,0,7,1,8,4,1,0,2,9,3,
%T A030437 2,4,5,4,2,9,2,3,2,6,7,5,0,2,7,2,6,1,9,3,0,8,4,6,9,7,5,1,0,8,4,6,8,8,
%U A030437 0,6,2,1,2,4,8,7,3,2,6,1,6,6,5,5,9,2,4,0,3,3,6,6,1,7,0,6,8,2,4,3,8,8,0
%N A030437 Decimal expansion of x such that x^x = Pi.
%H A030437 G. C. Greubel, <a href="/A030437/b030437.txt">Table of n, a(n) for n = 1..10000</a>
%e A030437 x = 1.8541059679210264327483707184102932454292... .
%p A030437 x^x=Pi; solve(%,x); evalf(%, 140); # solution is log(Pi)/LambertW(log(Pi)), where LambertW is the Omega function.
%t A030437 x=Pi; RealDigits[Log[x]/ProductLog[Log[x]],10,6! ][[1]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 11 2010 *)
%t A030437 RealDigits[x/.FindRoot[x^x==Pi,{x,1},WorkingPrecision->120],10,120][[1]] (* _Harvey P. Dale_, Nov 29 2024 *)
%o A030437 (PARI) solve(x=1, 2, x^x-Pi) \\ _Michel Marcus_, Jan 14 2015
%o A030437 (PARI) exp(lambertw(log(Pi))) \\ _Charles R Greathouse IV_, Nov 11 2017
%Y A030437 Cf. A000796 (Pi), A100947 (continued fraction), A073243 (reciprocal).
%K A030437 nonn,cons
%O A030437 1,2
%A A030437 James L. Dean (csvcjld(AT)nomvs.lsumc.edu)
%E A030437 More terms from _Simon Plouffe_
%E A030437 Better name from _Jon E. Schoenfield_, Dec 30 2014