cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030442 Values of Newton-Gregory forward interpolating polynomial (1/6)*(4*n^4 - 60*n^3 + 347*n^2 - 927*n + 978).

This page as a plain text file.
%I A030442 #24 Sep 11 2022 19:04:22
%S A030442 163,57,16,4,1,3,22,86,239,541,1068,1912,3181,4999,7506,10858,15227,
%T A030442 20801,27784,36396,46873,59467,74446,92094,112711,136613,164132,
%U A030442 195616,231429,271951,317578,368722,425811,489289,559616,637268,722737,816531,919174
%N A030442 Values of Newton-Gregory forward interpolating polynomial (1/6)*(4*n^4 - 60*n^3 + 347*n^2 - 927*n + 978).
%H A030442 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A030442 a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - _Colin Barker_, May 18 2014
%F A030442 G.f.: -(386*x^4-1136*x^3+1361*x^2-758*x+163) / (x-1)^5. - _Colin Barker_, May 18 2014
%F A030442 a(n) = A059259(2*n-5,4), n>4. - _Mathew Englander_, May 18 2014
%F A030442 E.g.f.: exp(x)*(978 - 636*x + 195*x^2 - 36*x^3 + 4*x^4)/6. - _Stefano Spezia_, Sep 11 2022
%p A030442 A030442:=n->(1/6)*(4*n^4-60*n^3+347*n^2-927*n+978); seq(A030442(n), n=0..40); # _Wesley Ivan Hurt_, May 19 2014
%t A030442 Table[(1/6)*(4*n^4 - 60*n^3 + 347*n^2 - 927*n + 978), {n, 0, 40}] (* _Wesley Ivan Hurt_, May 19 2014 *)
%o A030442 (PARI) a(n) = (1/6)*(4*n^4-60*n^3+347*n^2-927*n+978); \\ _Michel Marcus_, May 18 2014
%Y A030442 Cf. A059259.
%K A030442 nonn,easy
%O A030442 0,1
%A A030442 Ilias.Kotsireas(AT)lip6.fr (Ilias Kotsireas), Dec 11 1999