This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A030442 #24 Sep 11 2022 19:04:22 %S A030442 163,57,16,4,1,3,22,86,239,541,1068,1912,3181,4999,7506,10858,15227, %T A030442 20801,27784,36396,46873,59467,74446,92094,112711,136613,164132, %U A030442 195616,231429,271951,317578,368722,425811,489289,559616,637268,722737,816531,919174 %N A030442 Values of Newton-Gregory forward interpolating polynomial (1/6)*(4*n^4 - 60*n^3 + 347*n^2 - 927*n + 978). %H A030442 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A030442 a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - _Colin Barker_, May 18 2014 %F A030442 G.f.: -(386*x^4-1136*x^3+1361*x^2-758*x+163) / (x-1)^5. - _Colin Barker_, May 18 2014 %F A030442 a(n) = A059259(2*n-5,4), n>4. - _Mathew Englander_, May 18 2014 %F A030442 E.g.f.: exp(x)*(978 - 636*x + 195*x^2 - 36*x^3 + 4*x^4)/6. - _Stefano Spezia_, Sep 11 2022 %p A030442 A030442:=n->(1/6)*(4*n^4-60*n^3+347*n^2-927*n+978); seq(A030442(n), n=0..40); # _Wesley Ivan Hurt_, May 19 2014 %t A030442 Table[(1/6)*(4*n^4 - 60*n^3 + 347*n^2 - 927*n + 978), {n, 0, 40}] (* _Wesley Ivan Hurt_, May 19 2014 *) %o A030442 (PARI) a(n) = (1/6)*(4*n^4-60*n^3+347*n^2-927*n+978); \\ _Michel Marcus_, May 18 2014 %Y A030442 Cf. A059259. %K A030442 nonn,easy %O A030442 0,1 %A A030442 Ilias.Kotsireas(AT)lip6.fr (Ilias Kotsireas), Dec 11 1999