This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A030450 #35 Apr 18 2025 03:18:18 %S A030450 1,1,4,144,331776,2751882854400,272622932796264897576960000, %T A030450 3641839910835401567626683591527643364677019238400000000 %N A030450 Related to number of elements in the free band (idempotent semigroup) on n generators. %C A030450 Continued square root 2 = sqrt(1 + sqrt(1 + sqrt(4 + sqrt(144 + ...)))) = sqrt(1 + sqrt(1 + 2*sqrt(1 + 3*sqrt(1 + 4*sqrt(1 + ...))))) [S. Ramanujan]. - _Michael Somos_, Dec 03 2017 %D A030450 John M. Howie, Fundamentals of Semigroup Theory, Oxford University Press 1995, p. 123. %H A030450 <a href="/index/Se#semigroups">Index entries for sequences related to semigroups</a> %F A030450 Binomial transform is A005345. - _Michael Somos_, Oct 22 2006 %F A030450 a(n) = (n*a(n-1))^2 if n > 0. a(0)=1. - _Michael Somos_, Oct 22 2006 %F A030450 a(n) = Product_{i=1..n} (n-i+1)^(2^i). %F A030450 Sum_{n>=1} 1/a(n) = A258621. - _Amiram Eldar_, Nov 19 2020 %t A030450 s=1;lst={};Do[AppendTo[lst,s*=s*=n],{n,9}];lst (* _Vladimir Joseph Stephan Orlovsky_, Oct 20 2009 *) %t A030450 Fold[Append[#1, (#2 Last[#1])^2] &, {1}, Range@ 7] (* _Michael De Vlieger_, Dec 03 2017 *) %o A030450 (PARI) {a(n) = if(n<0, 0, prod(i=1, n, (n-i+1)^2^i))}; /* _Michael Somos_, Oct 22 2006 */ %o A030450 (Sage) %o A030450 def A030450(n) : %o A030450 return prod((n-i+1)^(2^i) for i in (1..n)) %o A030450 [A030450(n) for n in (0..9)] # _Jani Melik_, Jun 06 2015 %Y A030450 Cf. A005345, A030449, A258621. %Y A030450 A052129(n) = n*a(n-1) if n > 0. %K A030450 nonn %O A030450 0,3 %A A030450 Marcel Jackson (marcel_j(AT)hilbert.maths.utas.edu.au)