cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030476 Squares with property that all even digits occur together and all odd digits occur together.

This page as a plain text file.
%I A030476 #28 Aug 11 2024 11:51:58
%S A030476 0,1,4,9,16,25,36,49,64,81,100,144,196,225,289,324,400,441,484,576,
%T A030476 625,784,841,900,1024,1156,1444,1600,1764,1936,2025,2209,2401,2601,
%U A030476 2809,3136,3364,3600,3844,4225,4489,4624,5184,5776,6084,6241,6400
%N A030476 Squares with property that all even digits occur together and all odd digits occur together.
%C A030476 Among first 22083 terms (up to 10^14), there are 19202 even and 2881 odd terms. Also note that in odd terms, the only odd digit is the last one. - _Zak Seidov_, Apr 17 2016
%C A030476 From _Robert Israel_, Apr 18 2016: (Start)
%C A030476 For any k>=1, (10^k-2)^2 is a member of the sequence with the first k-1 digits odd and the last k+1 even, while (2*10^k+2)^2 = 4*10^(2*k)+8*10^k+4 is a member with all digits even, and (2*10^k+1)^2 is an odd member.
%C A030476 If x is an even member, then so is 100*x. (End)
%H A030476 Zak Seidov, <a href="/A030476/b030476.txt">Table of n, a(n) for n = 1..22083</a>
%F A030476 a(n) = A030477(n)^2. - _Andrew Howroyd_, Aug 11 2024
%e A030476 a(21055) = 9427771^2 = 88882866028441, - _Zak Seidov_, Apr 18 2016
%e A030476 a(21056) = 9427980^2 = 88886806880400. - _Robert Israel_, Apr 18 2016
%p A030476 filter:= proc(n) local L,evens,odds;
%p A030476 L:= convert(n,base,10) mod 2;
%p A030476 evens:= select(t -> L[t]::even, [$1..nops(L)]);
%p A030476 odds:= select(t -> L[t]::odd, [$1..nops(L)]);
%p A030476 (evens = []) or (odds = []) or (evens[1]>odds[-1]) or (odds[1]>evens[-1])
%p A030476 end proc:
%p A030476 select(filter, [seq(i^2,i=0..100)]); # _Robert Israel_, Apr 18 2016
%t A030476 Select[Range[0, 80]^2, Function[k, Or[Flatten@ # == k, Flatten@ Reverse@ # == k] &@ GatherBy[k, EvenQ]]@ IntegerDigits@ # &] (* _Michael De Vlieger_, Apr 17 2016 *)
%Y A030476 Setwise difference A000290 \ A030474.
%Y A030476 Cf. A030477.
%K A030476 nonn,base
%O A030476 1,3
%A A030476 _Patrick De Geest_
%E A030476 Offset corrected by _Andrew Howroyd_, Aug 11 2024