This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A030514 #92 Feb 16 2025 08:32:35 %S A030514 16,81,625,2401,14641,28561,83521,130321,279841,707281,923521,1874161, %T A030514 2825761,3418801,4879681,7890481,12117361,13845841,20151121,25411681, %U A030514 28398241,38950081,47458321,62742241,88529281,104060401,112550881,131079601,141158161 %N A030514 a(n) = prime(n)^4. %C A030514 Numbers with 5 divisors (1, p, p^2, p^3, p^4, where p is the n-th prime). - _Alexandre Wajnberg_, Jan 15 2006 %C A030514 Subsequence of A036967. - _Reinhard Zumkeller_, Feb 05 2008 %C A030514 The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - _Omar E. Pol_, May 06 2008 %C A030514 The general product formula for even s is: product_{p = A000040} (p^s-1)/(p^s+1) = 2*Bernoulli(2s)/( binomial(2s, s)*Bernoulli^2(s)), where the infinite product is over all primes. Here, with s = 4, product_{n = 1, 2, ...} (a(n)-1)/(a(n)+1) = 6/7. In A030516, where s = 6, the product of the ratios is 691/715. For s = 8, the 8th row in A120458, the corresponding product of ratios is 7234/7293. - _R. J. Mathar_, Feb 01 2009 %C A030514 Except for the first three terms, all others are congruent to 1 mod 240. - _Robert Israel_, Aug 29 2014 %H A030514 R. J. Mathar, <a href="/A030514/b030514.txt">Table of n, a(n) for n = 1..1000</a> %H A030514 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimePower.html">Prime Power</a>. %H A030514 OEIS Wiki, <a href="https://oeis.org/wiki/Index_entries_for_number_of_divisors">Index entries for number of divisors</a> %H A030514 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a> %F A030514 a(n) = A000040(n)^(5-1) = A000040(n)^4, where 5 is the number of divisors of a(n). - _Omar E. Pol_, May 06 2008 %F A030514 A000005(a(n)) = 5. - _Alexandre Wajnberg_, Jan 15 2006 %F A030514 A056595(a(n)) = 2. - _Reinhard Zumkeller_, Aug 15 2011 %F A030514 Sum_{n>=1} 1/a(n) = P(4) = 0.0769931397... (A085964). - _Amiram Eldar_, Jul 27 2020 %F A030514 From _Amiram Eldar_, Jan 23 2021: (Start) %F A030514 Product_{n>=1} (1 + 1/a(n)) = zeta(4)/zeta(8) = 105/Pi^4 (A157290). %F A030514 Product_{n>=1} (1 - 1/a(n)) = 1/zeta(4) = 90/Pi^4 (A215267). (End) %p A030514 map(p -> p^4, select(isprime,[2,seq(2*i+1,i=1..100)])); # _Robert Israel_, Aug 29 2014 %t A030514 Array[Prime[#]^4 &, 5!] (* _Vladimir Joseph Stephan Orlovsky_, Sep 01 2008 *) %o A030514 (Sage) %o A030514 [p**4 for p in prime_range(100)] %o A030514 # _Zerinvary Lajos_, May 15 2007 %o A030514 (Magma) [NthPrime(n)^4: n in [1..100] ]; // _Vincenzo Librandi_, Apr 22 2011 %o A030514 (PARI) a(n)=prime(n)^4 \\ _Charles R Greathouse IV_, Mar 21 2013 %o A030514 (Haskell) %o A030514 a030514 = (^ 4) . a000040 %o A030514 a030514_list = map (^ 4) a000040_list %o A030514 -- _Reinhard Zumkeller_, Jun 03 2015 %Y A030514 Cf. A030078, A085964, A131991, A131992, A000005, A000040, A001248, A157290, A215267. %Y A030514 Cf. A258601. %K A030514 nonn,easy %O A030514 1,1 %A A030514 _Jeff Burch_ %E A030514 Description corrected by _Eric W. Weisstein_