This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A030529 #38 Jul 08 2025 19:33:36 %S A030529 0,0,1,4,17,66,269,1102,4635,19768,85659,375524,1664015,7438862, %T A030529 33515027,152016610,693622315,3181516040,14661568795,67850245684, %U A030529 315187594779,1469195413102,6869889480447,32215398047474,151467333043437,713881813137776,3372142135461789 %N A030529 Number of polyhexes of class PF2 with a particular symmetry. %C A030529 See references for precise definition. %C A030529 Column D_{2h}(b) and Eq. 50 in Cyvin et al. (1994). - _Sean A. Irvine_, Mar 27 2021 %H A030529 S. J. Cyvin, J. Brunvoll, and B. N. Cyvin, <a href="https://doi.org/10.1007/BF01172927">Harary-Read numbers for catafusenes: Complete classification according to symmetry</a>, Journal of mathematical chemistry 9.1 (1992): 19-31 and 33-38. See pages 30 and 38. %H A030529 S. J. Cyvin, B. N. Cyvin, J. Brunvoll and E. Brendsdal, <a href="https://doi.org/10.1021/ci00021a026">Enumeration and Classification of Certain Polygonal Systems Representing Polycyclic Conjugated Hydrocarbons: Annelated Catafusenes</a>, Journal of Chemical Information and Modeling [formerly, J. Chem. Inform. Comput. Sci.], 34 (1994), pp. 1174-1180. %H A030529 S. J. Cyvin, Zhang Fuji, B. N. Cyvin, Guo Xiaofeng, and J. Brunvoll, <a href="https://doi.org/10.1021/ci00009a021">Enumeration and classification of benzenoid systems. 32. Normal perifusenes with two internal vertices</a>, J. Chem. Inform. Comput. Sci., 32 (1992), 532-540. %H A030529 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a030/A030529.java">Java program</a> (github) %F A030529 a(2)=0, a(n+2) = (M(2*n+1) - M(2*n) - M(n)) / 2 where M(n) = A055879(n) [Cyvin Eq. (54)]. - _Sean A. Irvine_, Apr 03 2020 %o A030529 (PARI) A055879(n)= my(A); if( n<1, 0, n--; A = O(x); for( k = 0, n\2, A = 1 / (1 - x - x^2 / (1 + x - x^2 * A))); polcoeff( A, n)); %o A030529 b(n) = (A055879(2*n+1) - A055879(2*n) - A055879(n)) / 2; %o A030529 a(n) = if( n<=2, 0, b(n - 2)); \\ _Michel Marcus_, Apr 03 2020 %Y A030529 Cf. A026106, A026118, A026298, A030519, A030520, A030525, A030529, A030532, A030534. %K A030529 nonn %O A030529 2,4 %A A030529 _N. J. A. Sloane_ %E A030529 More terms from _Sean A. Irvine_, Apr 03 2020