This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A030627 #29 Feb 21 2025 16:47:01 %S A030627 36,100,196,225,256,441,484,676,1089,1156,1225,1444,1521,2116,2601, %T A030627 3025,3249,3364,3844,4225,4761,5476,5929,6561,6724,7225,7396,7569, %U A030627 8281,8649,8836,9025,11236,12321,13225,13924,14161,14884,15129 %N A030627 Numbers with 9 divisors. %C A030627 Numbers of the form p^8 (8th row of A120458) or p^2*r^2 (A085986), where p and r are distinct primes. - _R. J. Mathar_, Mar 01 2010 %H A030627 R. J. Mathar, <a href="/A030627/b030627.txt">Table of n, a(n) for n = 1..1000</a> %F A030627 A000005(a(n)) = 9. - _Juri-Stepan Gerasimov_, Oct 10 2009 %F A030627 Sum_{n>=1} 1/a(n) = (P(2)^2 - P(4))/2 + P(8) = 0.0678286..., where P is the prime zeta function. - _Amiram Eldar_, Jul 03 2022 %t A030627 Select[Range[90000],DivisorSigma[0,#]==9&] (* _Vladimir Joseph Stephan Orlovsky_, May 05 2011 *) %o A030627 (PARI) is(n)=numdiv(n)==9 \\ _Charles R Greathouse IV_, Jun 19 2016 %o A030627 (Python) %o A030627 from math import isqrt %o A030627 from sympy import primepi, primerange %o A030627 def A030627(n): %o A030627 def bisection(f,kmin=0,kmax=1): %o A030627 while f(kmax) > kmax: kmax <<= 1 %o A030627 kmin = kmax >> 1 %o A030627 while kmax-kmin > 1: %o A030627 kmid = kmax+kmin>>1 %o A030627 if f(kmid) <= kmid: %o A030627 kmax = kmid %o A030627 else: %o A030627 kmin = kmid %o A030627 return kmax %o A030627 def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=isqrt(x))))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1))-primepi(isqrt(s))) %o A030627 return bisection(f,n,n) # _Chai Wah Wu_, Feb 21 2025 %Y A030627 Cf. A000005, A030515, A030516, A030626, A085986, A120458, A179645. %K A030627 nonn %O A030627 1,1 %A A030627 _Jeff Burch_