This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A030632 #29 Feb 22 2025 01:22:40 %S A030632 192,320,448,704,832,1088,1216,1458,1472,1856,1984,2368,2624,2752, %T A030632 3008,3392,3645,3776,3904,4288,4544,4672,5056,5103,5312,5696,6208, %U A030632 6464,6592,6848,6976,7232,8019,8128,8192,8384,8768,8896,9477,9536,9664,10048,10432 %N A030632 Numbers with 14 divisors. %C A030632 Numbers of the form p^13 (A138031) or p*q^6 (A189987), where p and q are distinct primes. - _R. J. Mathar_, Mar 01 2010 %H A030632 R. J. Mathar, <a href="/A030632/b030632.txt">Table of n, a(n) for n = 1..1000</a> %t A030632 Select[Range[15000], DivisorSigma[0, #] == 14 &] %o A030632 (PARI) is(n)=numdiv(n)==14 \\ _Charles R Greathouse IV_, Jun 19 2016 %o A030632 (Python) %o A030632 from sympy import primepi, primerange, integer_nthroot %o A030632 def A030632(n): %o A030632 def bisection(f,kmin=0,kmax=1): %o A030632 while f(kmax) > kmax: kmax <<= 1 %o A030632 kmin = kmax >> 1 %o A030632 while kmax-kmin > 1: %o A030632 kmid = kmax+kmin>>1 %o A030632 if f(kmid) <= kmid: %o A030632 kmax = kmid %o A030632 else: %o A030632 kmin = kmid %o A030632 return kmax %o A030632 def f(x): return n+x-sum(primepi(x//p**6) for p in primerange(integer_nthroot(x,6)[0]+1))+primepi(integer_nthroot(x,7)[0])-primepi(integer_nthroot(x,13)[0]) %o A030632 return bisection(f,n,n) # _Chai Wah Wu_, Feb 22 2025 %Y A030632 Cf. A092759. %K A030632 nonn %O A030632 1,1 %A A030632 _Jeff Burch_