This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A030633 #28 Feb 22 2025 01:22:47 %S A030633 144,324,400,784,1936,2025,2500,2704,3969,4624,5625,5776,8464,9604, %T A030633 9801,13456,13689,15376,16384,21609,21904,23409,26896,29241,29584, %U A030633 30625,35344,42849,44944,55696,58564,59536,60025,68121,71824,75625 %N A030633 Numbers with 15 divisors. %C A030633 Numbers of the form p^14 (subset of A010802) or p^2*q^4 (A189988) where p and q are distinct primes. - _R. J. Mathar_, Mar 01 2010 %H A030633 R. J. Mathar, <a href="/A030633/b030633.txt">Table of n, a(n) for n = 1..1000</a> %F A030633 From _Amiram Eldar_, Jul 03 2022: (Start) %F A030633 A000005(a(n)) = 15. %F A030633 Sum_{n>=1} 1/a(n) = P(2)*P(4) - P(6) + P(14) = 0.0178111..., where P is the prime zeta function. (End) %t A030633 Select[Range[300000],DivisorSigma[0,#]==15&] (* _Vladimir Joseph Stephan Orlovsky_, May 05 2011 *) %o A030633 (PARI) is(n)=numdiv(n)==15 \\ _Charles R Greathouse IV_, Jun 19 2016 %o A030633 (Python) %o A030633 from math import isqrt %o A030633 from sympy import primepi, primerange, integer_nthroot %o A030633 def A030633(n): %o A030633 def bisection(f,kmin=0,kmax=1): %o A030633 while f(kmax) > kmax: kmax <<= 1 %o A030633 kmin = kmax >> 1 %o A030633 while kmax-kmin > 1: %o A030633 kmid = kmax+kmin>>1 %o A030633 if f(kmid) <= kmid: %o A030633 kmax = kmid %o A030633 else: %o A030633 kmin = kmid %o A030633 return kmax %o A030633 def f(x): return n+x-sum(primepi(isqrt(x//p**4)) for p in primerange(integer_nthroot(x,4)[0]+1))+primepi(integer_nthroot(x,6)[0])-primepi(integer_nthroot(x,14)[0]) %o A030633 return bisection(f,n,n) # _Chai Wah Wu_, Feb 22 2025 %Y A030633 Cf. A000005, A010802, A030630, A030631, A030632, A189988. %K A030633 nonn %O A030633 1,1 %A A030633 _Jeff Burch_