This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A030648 #29 Feb 10 2025 09:32:29 %S A030648 1,27,351,3003,19305,100386,442442,1706562,5895396,18559580,53965548, %T A030648 146477916,374332452,907036326,2096092350,4642456390,9895762305, %U A030648 20373628275,40639459575,78751105875,148599912825,273612537900,492502568220,868056366060,1500344336400 %N A030648 Dimensions of multiples of minimal representation of complex Lie algebra E6. %D A030648 Onishchik and Vinberg, Seminar on Lie Groups and Algebraic Groups, Springer Verlag 1990, see Table 5. %H A030648 T. D. Noe, <a href="/A030648/b030648.txt">Table of n, a(n) for n = 0..1000</a> %H A030648 J. M. Landsberg and L. Manivel, <a href="https://doi.org/10.1016/j.aim.2005.02.001">The sextonions and E7 1/2</a>, Adv. Math. 201 (2006), 143-179. [Th. 7.3, case a=8] %H A030648 <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (17,-136,680,-2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1). %F A030648 a(n) = (1/517440)*binomial(n+11, 3)*binomial(n+3, 3)*binomial(n+8, 5)^2. %F A030648 From _G. C. Greubel_, Feb 09 2025: (Start) %F A030648 a(n) = (1/165)*binomial(n+8,8)*binomial(n+11,8). %F A030648 G.f.: (1 + 10*x + 28*x^2 + 28*x^3 + 10*x^4 + x^5)/(1-x)^17. (End) %p A030648 b:=binomial; t73:= proc(a,k) ((2*k+a)*(k+a)/(a^2)) * b(k+a-1,k)*b(k+3*a/2-1,k)/(b(k+a/2,k)); end; [seq(t73(8,k),k=0..40)]; %t A030648 Table[(Binomial[n+11,3]Binomial[n+3,3]Binomial[n+8,5]^2)/517440,{n,0,30}] (* _Harvey P. Dale_, May 01 2011 *) %o A030648 (Magma) %o A030648 A030648:= func< n | Binomial(n+8,8)*Binomial(n+11,8)/165 >; %o A030648 [A030648(n): n in [0..30]]; // _G. C. Greubel_, Feb 09 2025 %o A030648 (SageMath) %o A030648 def A030648(n): return binomial(n+8,8)*binomial(n+11,8)//165 %o A030648 print([A030648(n) for n in range(31)]) # _G. C. Greubel_, Feb 09 2025 %Y A030648 Cf. A133355. %K A030648 nonn,easy %O A030648 0,2 %A A030648 Paolo Dominici (pl.dm(AT)libero.it) %E A030648 Edited by _N. J. A. Sloane_, Oct 20 2007