cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030648 Dimensions of multiples of minimal representation of complex Lie algebra E6.

This page as a plain text file.
%I A030648 #29 Feb 10 2025 09:32:29
%S A030648 1,27,351,3003,19305,100386,442442,1706562,5895396,18559580,53965548,
%T A030648 146477916,374332452,907036326,2096092350,4642456390,9895762305,
%U A030648 20373628275,40639459575,78751105875,148599912825,273612537900,492502568220,868056366060,1500344336400
%N A030648 Dimensions of multiples of minimal representation of complex Lie algebra E6.
%D A030648 Onishchik and Vinberg, Seminar on Lie Groups and Algebraic Groups, Springer Verlag 1990, see Table 5.
%H A030648 T. D. Noe, <a href="/A030648/b030648.txt">Table of n, a(n) for n = 0..1000</a>
%H A030648 J. M. Landsberg and L. Manivel, <a href="https://doi.org/10.1016/j.aim.2005.02.001">The sextonions and E7 1/2</a>, Adv. Math. 201 (2006), 143-179. [Th. 7.3, case a=8]
%H A030648 <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (17,-136,680,-2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1).
%F A030648 a(n) = (1/517440)*binomial(n+11, 3)*binomial(n+3, 3)*binomial(n+8, 5)^2.
%F A030648 From _G. C. Greubel_, Feb 09 2025: (Start)
%F A030648 a(n) = (1/165)*binomial(n+8,8)*binomial(n+11,8).
%F A030648 G.f.: (1 + 10*x + 28*x^2 + 28*x^3 + 10*x^4 + x^5)/(1-x)^17. (End)
%p A030648 b:=binomial; t73:= proc(a,k) ((2*k+a)*(k+a)/(a^2)) * b(k+a-1,k)*b(k+3*a/2-1,k)/(b(k+a/2,k)); end; [seq(t73(8,k),k=0..40)];
%t A030648 Table[(Binomial[n+11,3]Binomial[n+3,3]Binomial[n+8,5]^2)/517440,{n,0,30}]  (* _Harvey P. Dale_, May 01 2011 *)
%o A030648 (Magma)
%o A030648 A030648:= func< n | Binomial(n+8,8)*Binomial(n+11,8)/165 >;
%o A030648 [A030648(n): n in [0..30]]; // _G. C. Greubel_, Feb 09 2025
%o A030648 (SageMath)
%o A030648 def A030648(n): return binomial(n+8,8)*binomial(n+11,8)//165
%o A030648 print([A030648(n) for n in range(31)]) # _G. C. Greubel_, Feb 09 2025
%Y A030648 Cf. A133355.
%K A030648 nonn,easy
%O A030648 0,2
%A A030648 Paolo Dominici (pl.dm(AT)libero.it)
%E A030648 Edited by _N. J. A. Sloane_, Oct 20 2007