cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030649 Dimensions of multiples of minimal representation of complex Lie algebra E7.

This page as a plain text file.
%I A030649 #15 Jan 10 2024 00:26:32
%S A030649 1,56,1463,24320,293930,2785552,21737254,144538624,839848450,
%T A030649 4347450800,20355385710,87265194240,345992859975,1279301331000,
%U A030649 4442249264625,14573017267200,45398364338250,134897996890800,383822534859750,1049290591104000,2764459117589400
%N A030649 Dimensions of multiples of minimal representation of complex Lie algebra E7.
%C A030649 From _Alexander R. Povolotsky_, Nov 19 2007: (Start)
%C A030649 After adjustment for the fact that a(n) is indexed from 0 while A121736 is indexed from 1, it appears that in many cases (with some exceptions) (a(n) - A121736(n+1))/133 (where A121736(3) = 133) yields integral values:
%C A030649 (1 - 1)/133 = 0
%C A030649 (56 - 56)/133 = 0
%C A030649 (1463 - 133) / 133 = 10
%C A030649 (24320 - 912) / 133 = 176
%C A030649 (293930 - 1463) / 133 = 2199
%C A030649 (2785552 - 1539) / 133 = 146527/7
%C A030649 (21737254 - 6480) / 133 = 21730774/133
%C A030649 (144538624 - 7371) / 133 = 144531253/133
%C A030649 (839848450 - 8645) / 133 = 6314585
%C A030649 (4347450800 - 24320) / 133 = 228811920/7
%C A030649 (20355385710 - 27664) / 133 = 153047805
%C A030649 (87265194240 - 40755) / 133 = 656128974
%C A030649 (345992859975 - 51072) / 133 = 2601449691
%C A030649 (1279301331000 - 86184) / 133 = 9618806352
%C A030649 (4442249264625 - 150822) / 133 = 233802584937/7
%C A030649 (14573017267200 - 152152)/133 = 109571557256
%C A030649 (45398364338250 - 238602)/133 = 341341083456
%C A030649 (134897996890800 - 253935)/133 = 1014270651405
%C A030649 (383822534565820 - 293930)/133 = 2885883718540
%C A030649 (1049290591104000 - 320112)/133 = 1049290590783888/133
%C A030649 ...
%C A030649 Note that 133 is also the dimension of the Lie algebra E_7. (End)
%D A030649 Onishchik and Vinberg, Seminar on Lie Groups and Algebraic Groups, Springer Verlag 1990, see Table 5.
%H A030649 G. C. Greubel, <a href="/A030649/b030649.txt">Table of n, a(n) for n = 0..1000</a>
%H A030649 J. M. Landsberg and L. Manivel, <a href="https://doi.org/10.1016/j.aim.2005.02.001">The sextonions and E7 1/2</a>, Adv. Math. 201 (2006), 143-179. [Th. 7.2(ii), case a=4]
%F A030649 a(n) = (1/10950439500)*(n+9)*binomial(n+17, 4)*binomial(n+4, 4)*binomial(n+13, 9)^2.
%p A030649 b:=binomial; t72b:= proc(a,k) ((a+k+1)/(a+1)) * b(k+2*a+1,k)*b(k+3*a/2+1,k)/(b(k+a/2,k)); end; [seq(t72b(8,k),k=0..28)];
%t A030649 Table[(1/10950439500)*(n + 9)*Binomial[n + 17, 4]*Binomial[n + 4, 4]* Binomial[n + 13, 9]^2, {n,0,50}] (* _G. C. Greubel_, Feb 19 2017 *)
%o A030649 (PARI) for(n=0,25, print1((1/10950439500)*(n+9)*binomial(n+17, 4)*binomial(n+4, 4)*binomial(n+13, 9)^2, ", ")) \\ _G. C. Greubel_, Feb 19 2017
%Y A030649 Cf. A121736.
%K A030649 nonn
%O A030649 0,2
%A A030649 Paolo Dominici (pl.dm(AT)libero.it)
%E A030649 Entry revised by _N. J. A. Sloane_, Oct 20 2007