This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A030675 #12 Sep 18 2018 04:50:03 %S A030675 11,23,31,41,53,61,71,83,97,113,223,331,443,557,661,773,881,991,1013, %T A030675 1117,1213,1319,14107,1511,1613,17107,1811,1913,2027,2129,2221,23201, %U A030675 2423,2521,2621,2729,28201,2927,3037,3137,32303,3331,3433 %N A030675 Smallest nontrivial extension of n-th palindrome which is a prime. %H A030675 Robert Israel, <a href="/A030675/b030675.txt">Table of n, a(n) for n = 1..10000</a> %F A030675 a(n) = A030665(A002113(n+1)). - _Robert Israel_, Sep 18 2018 %p A030675 lpe:= proc(n) local b,d,x; %p A030675 for d from 1 do %p A030675 b:= 10^d*n; %p A030675 for x from b+1 to b+10^d-1 by 2 do %p A030675 if isprime(x) then return x fi %p A030675 od %p A030675 od %p A030675 end proc: %p A030675 digrev:= proc(n) local L,i; %p A030675 L:= convert(n,base,10); %p A030675 add(L[-i]*10^(i-1),i=1..nops(L)) %p A030675 end proc: %p A030675 N:= 4: # to use all palindromes of up to N digits %p A030675 Res:= seq(lpe(n),n=1..9): %p A030675 for d from 2 to N do %p A030675 if d::even then %p A030675 m:= d/2; %p A030675 Res:= Res, seq(lpe(n*10^m + digrev(n)), n=10^(m-1)..10^m-1); %p A030675 else %p A030675 m:= (d-1)/2; %p A030675 Res:= Res, seq(seq(lpe(n*10^(m+1)+y*10^m+digrev(n)), y=0..9), n=10^(m-1)..10^m-1); %p A030675 fi %p A030675 od: %p A030675 Res; # _Robert Israel_, Sep 18 2018 %t A030675 d[n_]:=IntegerDigits[n]; Table[i=1; While[!PrimeQ[x=FromDigits[Flatten[{d[n],d[i]}]]],i=i+2]; x, {n,Select[Range[350],Reverse[x=d[#]]==x &]}] (* _Jayanta Basu_, May 24 2013 *) %Y A030675 Cf. A002113, A030665. %K A030675 nonn,base,look %O A030675 1,1 %A A030675 _Patrick De Geest_ %E A030675 Corrected by _Robert Israel_, Sep 18 2018