This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A030678 #10 Dec 25 2018 22:24:05 %S A030678 125,27,343,4096,512,64,729,8000,9261,110592,226981,3375,4410944, %T A030678 551368,6644672,778688,884736,9938375,101194696,111284641,12167, %U A030678 13144256,14172488,151419437,16194277,17173512,1815848,191102976 %N A030678 Smallest nontrivial extension of n-th palindrome which is a cube. %H A030678 Robert Israel, <a href="/A030678/b030678.txt">Table of n, a(n) for n = 1..10000</a> %F A030678 a(n) = A030668(A002113(n+1)) = A030679(n)^3. - _Robert Israel_, Dec 25 2018 %p A030678 N:= 3: # to get extensions of all palindromes of <= N digits %p A030678 f:= proc(n) local d,x; %p A030678 for d from 1 do %p A030678 x:= ceil((n*10^d)^(1/3)); %p A030678 if x^3 < (n+1)*10^d then return x^3 fi %p A030678 od %p A030678 end proc: %p A030678 digrev:= proc(n) local i,L; %p A030678 L:= convert(n,base,10); %p A030678 add(L[-i]*10^(i-1),i=1..nops(L)) %p A030678 end proc: %p A030678 Res:= seq(f(i),i=1..9): %p A030678 for d from 2 to N do %p A030678 if d::even then %p A030678 m:= d/2; %p A030678 Res:= Res, seq(f(n*10^m + digrev(n)), n=10^(m-1)..10^m-1); %p A030678 else %p A030678 m:= (d-1)/2; %p A030678 Res:= Res, seq(seq(f(n*10^(m+1)+y*10^m+digrev(n)), y=0..9), n=10^(m-1)..10^m-1) %p A030678 fi %p A030678 od: %p A030678 Res; # _Robert Israel_, Dec 25 2018 %Y A030678 Cf. A002113, A030668, A030679. %K A030678 nonn,base %O A030678 1,1 %A A030678 _Patrick De Geest_