This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A031035 #31 Nov 13 2024 11:30:55 %S A031035 1,2,3,4,5,6,7,1,0,1,1,1,2,1,3,1,4,1,5,1,6,1,7,2,0,2,1,2,2,2,3,2,4,2, %T A031035 5,2,6,2,7,3,0,3,1,3,2,3,3,3,4,3,5,3,6,3,7,4,0,4,1,4,2,4,3,4,4,4,5,4, %U A031035 6,4,7,5,0,5,1,5,2,5,3,5,4,5,5,5,6,5,7,6,0,6 %N A031035 Write n in base 8 and juxtapose. %C A031035 Apart from the initial term, identical to A054634. %C A031035 Should not be merged with A054634 because there are many sequences which depend on this sequence starting with a 1. - _N. J. A. Sloane_, Jan 30 2010 %C A031035 An irregular table in which the n-th row lists the base-8 digits of n. - _Jason Kimberley_, Dec 07 2012 %C A031035 The base-8 Champernowne constant: it is normal in base 8. - _Jason Kimberley_, Dec 07 2012 %H A031035 Robert Israel, <a href="/A031035/b031035.txt">Table of n, a(n) for n = 1..10000</a> %p A031035 seq(op(ListTools:-Reverse(convert(n,base,8))),n=1..100); # _Robert Israel_, Nov 12 2024 %t A031035 Flatten[ IntegerDigits[ Range[40], 8]] (* or *) %t A031035 almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 8] &, 105] (* _Robert G. Wilson v_, Jun 29 2014 *) %o A031035 (Magma) &cat[Reverse(IntegerToSequence(n,8)):n in[1..31]]; // _Jason Kimberley_, Dec 07 2012 %o A031035 (Python) %o A031035 from itertools import count, islice %o A031035 from sympy.ntheory.factor_ import digits %o A031035 def A031035_gen(): return (d for m in count(1) for d in digits(m,8)[1:]) %o A031035 A031035_list = list(islice(A031035_gen(),30)) # _Chai Wah Wu_, Jan 07 2022 %Y A031035 Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), this sequence and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - _Jason Kimberley_, Dec 06 2012 %Y A031035 Cf. A007094. %K A031035 nonn,base,cons,easy,tabf %O A031035 1,2 %A A031035 _Clark Kimberling_