This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A031138 #48 Feb 16 2025 08:32:35 %S A031138 1,13,133,1321,13081,129493,1281853,12689041,125608561,1243396573, %T A031138 12308357173,121840175161,1206093394441,11939093769253, %U A031138 118184844298093,1169909349211681,11580908647818721,114639177128975533,1134810862641936613,11233469449290390601 %N A031138 Numbers k such that 1^5 + 2^5 + ... + k^5 is a square. %C A031138 Partial sums of A004291 or convolution of A040000 with A054320. - _R. J. Mathar_, Oct 26 2009 %C A031138 This is a 6th-degree Diophantine equation 12*m^2 = n^2*(n+1)^2*(2*n^2 + 2*n - 1) which reduces to the generalized Pell equation 6*q^2 = (2*n + 1)^2 - 3 where q = 3*m/(n*(n+1)), so there is no surprise that the solutions satisfy a linear recurrent equation. - _Charles R Greathouse IV_, _Max Alekseyev_, Oct 22 2012 %C A031138 Also k such that k^2 + (k+1)^2 is equal to the sum of three consecutive squares, for example 13^2 + 14^2 = 10^2 + 11^2 + 12^2. - _Colin Barker_, Sep 06 2015 %H A031138 Colin Barker, <a href="/A031138/b031138.txt">Table of n, a(n) for n = 1..1000</a> %H A031138 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HexNumber.html">Hex Number</a> %H A031138 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11, -11, 1). %F A031138 a(n) = 11*(a(n-1) - a(n-2)) + a(n-3). %F A031138 a(n) = -1/2 + ((3 - sqrt(6))/4)*(5 + 2*sqrt(6))^n + ((3 + sqrt(6))/4)*(5 - 2*sqrt(6))^n. %F A031138 a(n)^2 + (a(n) + 1)^2 = (b(n) - 1)^2 + b(n)^2 + (b(n) + 1)^2 = c(n) = 3*d(n) + 2; where b(n) is A054320, c(n) is A007667 and d(n) is A006061. %F A031138 a(n) = 10*a(n-1) - a(n-2) + 4; a(0) = a(1) = 1. Also sum of first a(n) fifth powers is a square m^2, where m has factors A000217{a(n)} and A054320(n). - _Lekraj Beedassy_, Jul 08 2002 %F A031138 contfrac(sqrt(6)/A054320(n))[4]/2 - _Thomas Baruchel_, Dec 02 2003 %F A031138 G.f.: x*(1+x)^2/((1-x)*(x^2-10*x+1)). - _R. J. Mathar_, Oct 26 2009 %e A031138 a(2) = 13 because 1^5+2^5+...13^5 = 1001^2; a(1) = 1 because 1^5 = 1^2. %t A031138 LinearRecurrence[{11,-11,1},{1,13,133},20 ] (* _Harvey P. Dale_, Oct 23 2012 *) %o A031138 (PARI) isok(n) = issquare(sum(i=1, n, i^5)); \\ _Michel Marcus_, Dec 28 2013 %o A031138 (PARI) Vec(x*(1+x)^2/((1-x)*(x^2-10*x+1)) + O(x^40)) \\ _Colin Barker_, Sep 06 2015 %o A031138 (Magma) [Round(-1/2 + ((3 - Sqrt(6))/4)*(5 + 2*Sqrt(6))^n + ((3 + Sqrt(6) )/4)*(5 - 2*Sqrt(6))^n): n in [0..50]]; // _G. C. Greubel_, Nov 04 2017 %Y A031138 Cf. A000539, A006061, A054320, A007667. %K A031138 easy,nonn %O A031138 1,2 %A A031138 _Ignacio Larrosa CaƱestro_, entry revised Feb 27 2000