cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031361 Number of symmetrically inequivalent coincidence rotations of index n in lattice Z^4.

Original entry on oeis.org

1, 2, 16, 0, 36, 32, 64, 0, 168, 72, 144, 0, 196, 128, 576, 0, 324, 336, 400, 0, 1024, 288, 576, 0, 960, 392, 1584, 0, 900, 1152, 1024, 0, 2304, 648, 2304, 0, 1444, 800, 3136, 0, 1764, 2048, 1936, 0, 6048, 1152, 2304, 0, 3248, 1920, 5184, 0, 2916, 3168, 5184, 0
Offset: 1

Views

Author

Keywords

Comments

Dirichlet product of 1 + 2/2^s with Sum_{n>=1} A031360(n)/(2n-1)^s. - R. J. Mathar, Jul 16 2010
Some symmetrically distinct rotations generate the same coincidence site lattices, hence a(n) >= A331140(n). - Andrey Zabolotskiy, Jan 29 2020

Crossrefs

Programs

  • Maple
    read("transforms") : maxOrd := 120 :
    ZetaNum := proc(p,nmax,f) local n ; L := [1,seq(0,n=2..p-1),f,seq(0,n=p+1..nmax)] ; end proc:
    Zeta := proc(p,nmax,f) local L,e; L := [1,seq(0,n=2..nmax)] ; for e from 1 do if p^e > nmax then break; else L := subsop(p^e=f^e,L) ; end if; end do: L ; end proc:
    Zetap := ZetaNum(2,maxOrd,2): for e from 3 to maxOrd do if isprime(e) then ZetaNum(e,maxOrd,1) ; Zetap := DIRICHLET(Zetap,%) ; ZetaNum(e,maxOrd,e) ; Zetap := DIRICHLET(Zetap,%) ; Zeta(e,maxOrd,e) ; Zetap := DIRICHLET(Zetap,%) ; Zeta(e,maxOrd,e^2) ; Zetap := DIRICHLET(Zetap,%) ; end if; end do: Zetap ;
    # R. J. Mathar, Jul 16 2010
  • Mathematica
    maxOrd = 120;
    did[m_, n_] := If[Mod[m, n] == 0, 1, 0];
    DIRICHLET[a_List, b_List] := Module[{c = {}, i, s, d}, For[i = 1, i <= Min[Length[a], Length[b]], i++, s = 0; For[d = 1, d <= i, d++, If[did[i, d] == 1, s = s + a[[d]] b[[i/d]]]]; c = Append[c, s]]; c];
    zetaNum[p_, nmax_, f_] := Module[{n}, L = Join[{1}, Table[0, {n, 2, p-1}], {f}, Table[0, {n, p+1, nmax}]]];
    zeta[p_, nmax_, f_] := Module[{L, e}, L = Join[{1}, Table[0, {n, 2, nmax}] ]; For[e = 1, True, e++, If[p^e > nmax, Break[], L = ReplacePart[L, p^e -> f^e]]]; L];
    zetap = zetaNum[2, maxOrd, 2];
    For[e = 3, e <= maxOrd, e++, If[PrimeQ[e], ze = zetaNum[e, maxOrd, 1];
      zetap = DIRICHLET[zetap, ze]; ze = zetaNum[e, maxOrd, e];
      zetap = DIRICHLET[zetap, ze]; ze = zeta[e, maxOrd, e];
      zetap = DIRICHLET[zetap, ze]; ze = zeta[e, maxOrd, e^2];
      zetap = DIRICHLET[zetap, ze]]];
    zetap (* Jean-François Alcover, Apr 20 2020, after R. J. Mathar *)

Formula

Dirichlet series: (1+2^(1-s))* Product (1+p^(-s))*(1+p^(1-s))/((1-p^(1-s))*(1-p^(2-s))); p != 2.
From Vaclav Kotesovec, Jul 18 2025: (Start)
Dirichlet g.f.: (2^s-4) * (2^s-2) * zeta(s-2) * zeta(s-1)^2 * zeta(s) / (2^s * (2^s+1) * zeta(2*s) * zeta(2*s-2)).
Sum_{k=1..n} a(k) ~ 525 * zeta(3) * n^3 / (2*Pi^6). (End)

Extensions

More terms from R. J. Mathar, Jul 16 2010
Typo in formula (exclamation mark for 1) corrected by R. J. Mathar, Jul 23 2010
Name corrected by Andrey Zabolotskiy, Jan 29 2020