This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A031364 #16 Jul 08 2025 19:35:44 %S A031364 1,0,0,5,6,0,0,0,10,0,24,0,0,0,0,20,0,0,40,30,0,0,0,0,30,0,0,0,60,0, %T A031364 64,0,0,0,0,50,0,0,0,0,84,0,0,120,60,0,0,0,50,0,0,0,0,0,144,0,0,0,120, %U A031364 0,124,0,0,80,0,0,0,0,0,0,144,0,0,0,0,200,0,0 %N A031364 Number of coincidence site modules of index 10n+1 in an icosahedral module. %C A031364 a(n) is nonzero iff n is of the form x^2+x*y+y^2 (A031363). %D A031364 Michael Baake, "Solution of coincidence problem in dimensions d<=4", in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44. %H A031364 M. Baake, <a href="http://arxiv.org/abs/math/0605222">Solution of the coincidence problem in dimensions d <= 4</a>, arxiv:math/0605222 (2006), Prop. 5.4. %H A031364 Michael Baake and Peter AB Pleasants, <a href="https://doi.org/10.1515/zna-1995-0802">Algebraic solution of the coincidence problem in two and three dimensions</a>, Zeitschrift für Naturforschung A 50.8 (1995): 711-717. See page 716. %H A031364 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a031/A031364.java">Java program</a> (github) %F A031364 Dirichlet series: ((1+5^(-s))/(1-5^(1-s))) * Product_{p = +-2 (mod 5)} ((1+p^(-2*s))/(1-p^(2*(1-s)))) * Product_{p = +-1 (mod 5)} ((1+p^(-s))/(1-p^(1-s)))^2. - _Sean A. Irvine_, Apr 29 2020 %Y A031364 Cf. A031363. %K A031364 nonn,easy %O A031364 1,4 %A A031364 _N. J. A. Sloane_ %E A031364 Missing a(8)=0 and more terms from _Sean A. Irvine_, Apr 29 2020