cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031366 Number of symmetrically inequivalent coincidence rotations of icosian ring of index n.

This page as a plain text file.
%I A031366 #30 Feb 16 2021 13:13:15
%S A031366 1,0,0,25,36,0,0,0,100,0,288,0,0,0,0,440,0,0,800,900,0,0,0,0,960,0,0,
%T A031366 0,1800,0,2048,0,0,0,0,2500,0,0,0,0,3528,0,0,7200,3600,0,0,0,2550,0,0,
%U A031366 0,0,0,10368,0,0,0,7200,0,7688,0,0,7330,0,0,0,0,0,0,10368,0,0,0,0,20000,0,0,12800,15840,8362,0,0,0,0,0,0,0,16200,0,0,0,0,0,28800,0,0,0,28800,23899
%N A031366 Number of symmetrically inequivalent coincidence rotations of icosian ring of index n.
%C A031366 The overall number of coincidence rotations is 7200 times this value. Some symmetrically distinct rotations generate the same coincidence site modules, hence a(n) >= A331143(n). - _Andrey Zabolotskiy_, Feb 16 2021
%H A031366 M. Baake, <a href="https://arxiv.org/abs/math/0605222">Solution of the coincidence problem in dimensions d <= 4</a>, in R. V. Moody, ed., Math. of Long-Range Aperiodic Order, Kluwer 1997, pp. 9-44.; arXiv:math/0605222 [math.MG], 2006.
%H A031366 Michael Baake and Peter Zeiner, <a href="https://doi.org/10.1080/14786430701846206">Coincidences in 4 dimensions</a>, Phil. Mag. 88 (2008), 2025-2032; arXiv:<a href="https://arxiv.org/abs/0712.0363">0712.0363</a> [math.MG]. See Section 4. Caution: there is a typo in a(19).
%F A031366 See Baake (1997) for the Dirichlet g.f.
%p A031366 read("transforms") :
%p A031366 # expansion of 1/(1-5^(-s)) in (5.10)
%p A031366 L1 := [1,seq(0,i=2..200)] :
%p A031366 for k from 1 do
%p A031366     if 5^k <= nops(L1) then
%p A031366         L1 := subsop(5^k=1,L1) ;
%p A031366     else
%p A031366         break ;
%p A031366     end if;
%p A031366 end do:
%p A031366 # multiplication with 1/(1-p^(-2s)) in (5.10)
%p A031366 for i from 1 do
%p A031366     p := ithprime(i) ;
%p A031366     if modp(p,5) = 2 or modp(p,5)=3 then
%p A031366         Laux := [1,seq(0,i=2..200)] :
%p A031366         for k from 1 do
%p A031366             if p^(2*k) <= nops(Laux) then
%p A031366                 Laux := subsop(p^(2*k)=1,Laux) ;
%p A031366             else
%p A031366                 break ;
%p A031366             end if;
%p A031366         end do:
%p A031366         L1 := DIRICHLET(L1,Laux) ;
%p A031366     end if;
%p A031366     if p > nops(L1) then
%p A031366         break;
%p A031366     end if;
%p A031366 end do:
%p A031366 # multiplication with 1/(1-p^(-s))^2 in (5.10)
%p A031366 for i from 1 do
%p A031366     p := ithprime(i) ;
%p A031366     if modp(p,5) = 1 or modp(p,5)=4 then
%p A031366         Laux := [1,seq(0,i=2..200)] :
%p A031366         for k from 1 do
%p A031366             if p^k <= nops(Laux) then
%p A031366                 Laux := subsop(p^k=k+1,Laux) ;
%p A031366             else
%p A031366                 break ;
%p A031366             end if;
%p A031366         end do:
%p A031366         L1 := DIRICHLET(L1,Laux) ;
%p A031366     end if;
%p A031366     if p > nops(L1) then
%p A031366         break;
%p A031366     end if;
%p A031366 end do:
%p A031366 # this is now Zeta_L(s), seems to be A035187
%p A031366 # print(L1) ;
%p A031366 # generate Zeta_L(s-1)
%p A031366 L1shft := [seq(op(i,L1)*i,i=1..nops(L1))] ;
%p A031366 # generate 1/Zeta_L(s)
%p A031366 L1x := add(op(i,L1)*x^(i-1),i=1..nops(L1)) :
%p A031366 taylor(1/L1x,x=0,nops(L1)) :
%p A031366 L1i := gfun[seriestolist](%) ;
%p A031366 # generate 1/Zeta_L(2s)
%p A031366 L1i2 := [1,seq(0,i=2..nops(L1))] ;
%p A031366 for k from 2 to nops(L1i) do
%p A031366     if k^2 < nops(L1i2) then
%p A031366         L1i2 := subsop(k^2=op(k,L1i),L1i2) ;
%p A031366     else
%p A031366         break ;
%p A031366     end if;
%p A031366 end do:
%p A031366 # generate Zeta_L(s)*Zeta_L(s-1)
%p A031366 DIRICHLET(L1,L1shft) ;
%p A031366 # generate Zeta_L(s)*Zeta_L(s-1)/Zeta_L(2s) = Phi(s)
%p A031366 Phis := DIRICHLET(%,L1i2) ;
%p A031366 # generate Phis(s-1)
%p A031366 Phishif := [seq(op(i,Phis)*i,i=1..nops(Phis))] ;
%p A031366 DIRICHLET(Phis,Phishif) ;
%Y A031366 Cf. A331143.
%K A031366 nonn,mult
%O A031366 1,4
%A A031366 _N. J. A. Sloane_
%E A031366 Terms beyond a(36) from _R. J. Mathar_, Mar 04 2018
%E A031366 New name from _Andrey Zabolotskiy_, Feb 16 2021