This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A031688 #19 Aug 18 2021 00:10:32 %S A031688 2501,123953,203482,204385,206197,304825,425273,568741,726193,727898, %T A031688 734738,906665,1119805,1124041,1334554,1341493,1346129,1565626, %U A031688 1568129,1570634,1573141,1578161,1580674,1583189,1590746,1593269,1828633,2126605,2138285,2144137 %N A031688 Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted the two central terms are both 100. %H A031688 Chai Wah Wu, <a href="/A031688/b031688.txt">Table of n, a(n) for n = 1..1000</a> %t A031688 cf100Q[n_]:=Module[{s=Sqrt[n],cf,len},cf=If[IntegerQ[s],{1,1}, ContinuedFraction[ s][[2]]];len=Length[cf];OddQ[len] && cf[[(len+1)/2]] == 100]; Select[Range[2200000],cf100Q] (* _Harvey P. Dale_, May 29 2016 *) %o A031688 (Python) %o A031688 from sympy import continued_fraction_periodic %o A031688 A031688_list = [n for n, s in ((i, continued_fraction_periodic(0,1,i)[-1]) for i in range(1,10**5)) if isinstance(s, list) and len(s) % 2 and s[(len(s)-1)//2] == 100] # _Chai Wah Wu_, Jun 11 2017 %K A031688 nonn %O A031688 1,1 %A A031688 _David W. Wilson_ %E A031688 Definition corrected and terms corrected and extended by _Harvey P. Dale_, May 29 2016