This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A031775 #19 Jul 16 2021 02:40:28 %S A031775 9411,37640,84687,150552,235235,338736,461055,602192,762147,940920, %T A031775 1138511,1354920,1590147,1844192,2117055,2408736,2719235,3048552, %U A031775 3396687,3763640,4149411,4554000,4977407,5419632,5880675,6360536,6859215,7376712 %N A031775 Numbers k such that the least term in the periodic part of the continued fraction for sqrt(k) is 97. %C A031775 (97*m)^2+2*m for m >= 1 are terms of the sequence (see comment in A031749). The term 89453959 is not of this form. - _Chai Wah Wu_, Jun 19 2016 %H A031775 Chai Wah Wu, <a href="/A031775/b031775.txt">Table of n, a(n) for n = 1..10000</a> %t A031775 cf97Q[n_]:=Module[{s=Sqrt[n]},If[IntegerQ[s],1,Min[ContinuedFraction[s][[2]]]]==97]; Select[Range[738*10^4],cf97Q] (* _Harvey P. Dale_, Nov 20 2018 *) %o A031775 (Python) %o A031775 from sympy import continued_fraction_periodic %o A031775 A031775_list = [n for n, d in ((n, continued_fraction_periodic(0,1,n)[-1]) for n in range(1,10**5)) if isinstance(d, list) and min(d) == 97] # _Chai Wah Wu_, Jun 10 2017 %K A031775 nonn %O A031775 1,1 %A A031775 _David W. Wilson_