This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A031777 #20 Jul 11 2021 21:36:53 %S A031777 9803,39208,88215,156824,245035,352848,480263,627280,793899,980120, %T A031777 1185943,1411368,1656395,1921024,2205255,2509088,2832523,3175560, %U A031777 3538199,3920440,4322283,4743728,5184775,5645424,6125675,6625528,7144983,7684040 %N A031777 Numbers k such that the least term in the periodic part of the continued fraction for sqrt(k) is 99. %C A031777 (99*m)^2+2*m for m >= 1 is a proper subsequence (it is a subsequence, see comment in A031749) as the term 97042400 is not of this form. - _Chai Wah Wu_, Jun 19 2016 %H A031777 Chai Wah Wu, <a href="/A031777/b031777.txt">Table of n, a(n) for n = 1..10000</a> %t A031777 lt99Q[n_]:=Module[{s=Sqrt[n],lt},If[IntegerQ[s],lt=1,lt= Min[ ContinuedFraction[ s][[2]]]];lt==99]; Select[Range[8000000],lt99Q] (* _Harvey P. Dale_, Apr 20 2013 *) %o A031777 (Python) %o A031777 from sympy import continued_fraction_periodic %o A031777 A031777_list = [n for n, d in ((n, continued_fraction_periodic(0,1,n)[-1]) for n in range(1,10**5)) if isinstance(d, list) and min(d) == 99] # _Chai Wah Wu_, Jun 10 2017 %K A031777 nonn %O A031777 1,1 %A A031777 _David W. Wilson_