cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031877 Nontrivial reversal numbers (numbers which are integer multiples of their reversals), excluding palindromic numbers and multiples of 10.

This page as a plain text file.
%I A031877 #80 Feb 16 2025 08:32:36
%S A031877 8712,9801,87912,98901,879912,989901,8799912,9899901,87128712,
%T A031877 87999912,98019801,98999901,871208712,879999912,980109801,989999901,
%U A031877 8712008712,8791287912,8799999912,9801009801,9890198901,9899999901,87120008712,87912087912,87999999912
%N A031877 Nontrivial reversal numbers (numbers which are integer multiples of their reversals), excluding palindromic numbers and multiples of 10.
%C A031877 The terms of this sequence are sometimes called palintiples.
%C A031877 All terms are of the form 87...12 = 4*21...78 or 98...01 = 9*10...89. [This was proved by Hoey, 1992. - _N. J. A. Sloane_, Oct 19 2014] More precisely, they are obtained from concatenated copies of either 8712 or 9801, with 9's inserted "in the middle of" these and/or 0's inserted between the copies these, in a symmetrical way. A008919 lists the reversals, but not in the same order, e.g., R(a(2)) < R(a(1)). - _M. F. Hasler_, Aug 18 2014
%C A031877 There are 2*Fibonacci(floor((n-2)/2)) terms with n digits (this is A214927 or essentially twice A103609). - _Ray Chandler_, Oct 11 2017
%D A031877 W. W. R. Ball and H. S. M. Coxeter. Mathematical Recreations and Essays (1939, page 13); 13th ed. New York: Dover, pp. 14-15, 1987.
%D A031877 G. H. Hardy, A Mathematician's Apology (Cambridge Univ. Press, 1940, reprinted 2000), pp. 104-105 (describes this problem as having "nothing in [it] which appeals much to a mathematician.").
%H A031877 Ray Chandler, <a href="/A031877/b031877.txt">Table of n, a(n) for n = 1..10000</a>
%H A031877 Martin Beech, <a href="http://www.jstor.org/stable/3618854">A Computer Conjecture of a Non-Serious Theorem</a>, Mathematical Gazette, 74 (No. 467, March 1990), 50-51.
%H A031877 Patrick De Geest, <a href="http://www.worldofnumbers.com/reversal.htm">Palindromic Products of Integers and their Reversals</a>
%H A031877 D. J. Hoey, <a href="http://djm.cc/rpa-output/arithmetic/digits/palintiples.s">Palintiples</a>
%H A031877 D. J. Hoey, <a href="/A008919/a008919.txt">Palintiples</a> [Cached copy]
%H A031877 Benjamin V. Holt, <a href="http://www.emis.de/journals/INTEGERS/papers/o42/o42.Abstract.html">Some General Results and Open Questions on Palintiple Numbers</a>, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 14, Paper A42, 2014.
%H A031877 Benjamin V. Holt, <a href="http://arxiv.org/abs/1410.2356">A Determination of Symmetric Palintiples</a>, arXiv:1410.2356 [math.NT], 2014.
%H A031877 Benjamin V. Holt, <a href="http://arxiv.org/abs/1412.0231">Families of Asymmetric Palintiples Constructed from Symmetric and Shifted-Symmetric Palintiples</a>, arXiv:1412.0231 [math.NT], 2014.
%H A031877 L. H. Kendrick, <a href="http://arxiv.org/abs/1410.0106">Young Graphs: 1089 et al</a>, arXiv:1410.0106 [math.NT], 2014.
%H A031877 L. H. Kendrick, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Kendrick/ken1.html">Young Graphs: 1089 et al.</a>, J. Int. Seq. 18 (2015) 15.9.7.
%H A031877 Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/papers/mm005281.pdf">Digit Reversal Without Apology</a>, Mathematics Magazine, Vol. 80 (2007), pp. 129-132.
%H A031877 N. J. A. Sloane, <a href="http://arxiv.org/abs/1307.0453">2178 And All That</a>, Fib. Quart., 52 (2014), 99-120.
%H A031877 N. J. A. Sloane, <a href="/A001232/a001232.pdf">2178 And All That</a> [Local copy]
%H A031877 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Reversal.html">Reversal.</a>
%F A031877 a(n) = A004086(a(n))*[9/(a(n)%10)], where [...]=9 if a(n) ends in "1" and [...]=4 if a(n) ends in "2". - _M. F. Hasler_, Aug 18 2014
%t A031877 fQ[n_] := Block[{id = IntegerDigits@n}, Mod[n, FromDigits@ Reverse@id] == 0 && n != FromDigits@ Reverse@ id && Mod[n, 10] > 0]; k = 1; lst = {}; While[k < 10^9, If[fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst (* _Robert G. Wilson v_, Jun 11 2010 *)
%t A031877 okQ[t_]:=t==Reverse[t]&&First[t]!=0&&Min[Length/@Split[t]]>1; Sort[Flatten[ {(4*198)#,(9*99)#}&/@Flatten[Table[FromDigits/@Select[Tuples[ {0,1},n], okQ],{n,12}]]]] (* _Harvey P. Dale_, Jul 03 2013 *)
%o A031877 (Haskell)
%o A031877 a031877_list = [x | x <- [1..], x `mod` 10 > 0,
%o A031877                     let x' = a004086 x, x' /= x && x `mod` x' == 0]
%o A031877 -- _Reinhard Zumkeller_, Jul 15 2013
%o A031877 (PARI) is_A031877(n)={n%10 && n%A004086(n)==0 && n>A004086(n)} \\ _M. F. Hasler_, Aug 18 2014
%o A031877 (Python)
%o A031877 A031877 = []
%o A031877 for n in range(1,10**7):
%o A031877     if n % 10:
%o A031877         s1 = str(n)
%o A031877         s2 = s1[::-1]
%o A031877         if s1 != s2 and not n % int(s2):
%o A031877             A031877.append(n) # _Chai Wah Wu_, Sep 05 2014
%Y A031877 See A008919 for reversals (this is the main entry for the problem).
%Y A031877 Cf. A169824, A214927, A103609.
%Y A031877 Union of A222814 and A222815.
%Y A031877 Subsequence of A118959.
%K A031877 nonn,base
%O A031877 1,1
%A A031877 _Eric W. Weisstein_
%E A031877 More terms from _Jud McCranie_, Aug 15 2001
%E A031877 More terms from _Sam Mathers_, Aug 18 2014