cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031940 Length of longest legal domino snake using full set of dominoes up to [n:n].

This page as a plain text file.
%I A031940 #32 Sep 08 2022 08:44:50
%S A031940 1,3,6,9,15,19,28,33,45,51,66,73,91,99,120,129,153,163,190,201,231,
%T A031940 243,276,289,325,339,378,393,435,451,496,513,561,579,630,649,703,723,
%U A031940 780,801,861,883,946,969,1035,1059,1128,1153,1225,1251,1326,1353,1431,1459
%N A031940 Length of longest legal domino snake using full set of dominoes up to [n:n].
%H A031940 G. C. Greubel, <a href="/A031940/b031940.txt">Table of n, a(n) for n = 1..5000</a>
%H A031940 <a href="/index/Do#domino">Index entries for sequences related to dominoes</a>
%H A031940 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).
%F A031940 C(n, 2) + n if n odd, C(n, 2) + n/2 + 1 if n even. - _T. D. Noe_, Nov 09 2006
%F A031940 a(n) = A204556(n+1) / (n+1). - _Reinhard Zumkeller_, Jan 18 2012
%F A031940 G.f.: -x*(1+2*x+x^2-x^3+x^4) / ( (1+x)^2*(x-1)^3 ). - _R. J. Mathar_, Aug 13 2012
%F A031940 a(n) = ((-1)^n*(2 - n) + (2 + n + 2*n^2))/4. - _G. C. Greubel_, Jun 15 2018
%e A031940 E.g., for n=4 [ 1:1 ][ 1:2 ][ 2:2 ][ 2:3 ][ 3:3 ][ 3:1 ][ 1:4 ][ 4:4 ][ 4:2 ].
%t A031940 Rest[CoefficientList[Series[x*(1 + 2*x + x^2 - x^3 + x^4)/((1 + x)^2*(1 - x)^3), {x, 0, 50}], x]] (* or *) Table[((-1)^n*(2-n) + (2+n+2*n^2))/4, {n,1, 50}] (* _G. C. Greubel_, Jun 15 2018 *)
%o A031940 (PARI) for(n=1, 60, print1(((-1)^n*(2 - n) + (2 + n + 2*n^2))/4, ", ")) \\ _G. C. Greubel_, Jun 15 2018
%o A031940 (PARI) Vec(-x*(1+2*x+x^2-x^3+x^4) / ( (1+x)^2*(x-1)^3 ) + O(x^60)) \\ _Felix Fröhlich_, Jun 18 2018
%o A031940 (Magma) [((-1)^n*(2 - n) + (2 + n + 2*n^2))/4: n in [1..60]]; // _G. C. Greubel_, Jun 15 2018
%Y A031940 Cf. A031878, A204556.
%K A031940 nonn
%O A031940 1,2
%A A031940 _Colin Mallows_
%E A031940 Corrected by _T. D. Noe_, Nov 09 2006
%E A031940 More terms from _Felix Fröhlich_, Jun 18 2018