This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A032092 #48 Jul 01 2018 11:09:55 %S A032092 3,9,28,60,126,226,396,636,1001,1491,2184,3080,4284,5796,7752,10152, %T A032092 13167,16797,21252,26532,32890,40326,49140,59332,71253,84903,100688, %U A032092 118608,139128,162248,188496,217872,250971,287793,329004,374604,425334,481194,543004 %N A032092 Number of reversible strings with n-1 beads of 2 colors. 5 beads are black. String is not palindromic. %C A032092 If the offset is changed to 3, this is the 2nd Witt transform of A000217 [Moree]. - _R. J. Mathar_, Nov 08 2008 %C A032092 From _Petros Hadjicostas_, May 19 2018: (Start) %C A032092 Let k be an integer >= 2. The g.f. of the BHK[k] transform of the sequence (c(n): n >= 1), with g.f. C(x) = Sum_{n>=1} c(n)*x^n, is A_k(x) = (C(x)^k - C(x^2)^(k/2))/2 if k is even, and A_k(x) = (C(x)/2)*(C(x)^{k-1} - C(x^2)^{(k-1)/2}) if k is odd. This follows easily from the formulae in C. G. Bower's web link below about transforms. %C A032092 When k is even and c(n) = 1 for all n >= 1, we get C(x) = x/(1-x) and A_k(x) = (1/2)*((x/(1-x))^k - (x^2/(1-x^2))^{k/2}). If (a_k(n): n >= 1) is the output sequence (with g.f. A_k(x)), then it can be proved (using Taylor expansions) that a_k(n) = (1/2)*(binomial(n-1, n-k) - binomial((n/2)-1, (n-k)/2)) for even n >= k+1 and a_k(n) = (1/2)*binomial(n-1, n-k) for odd n >= k+1. (Clearly, a_k(1) = ... = a_k(k) = 0.) %C A032092 In this sequence, k = 6, and (according to C. G. Bower) a(n) = a_{k=6}(n) is the number of reversible non-palindromic compositions of n with 6 positive parts. If n = b_1 + b_2 + b_3 + b_4 + b_5 + b_6 is such a composition of n (with b_i >= 1), then it is equivalent to the composition n = b_6 + b_5 + b_4 + b_3 + b_2 + b_1, and each equivalent class has two elements because here linear palindromes are not allowed as compositions of n. %C A032092 The fact that we are finding the BHK[6] transform of 1, 1, 1, ... means that each part of each composition of n can have exactly one color (see Bower's link below about transforms). %C A032092 In each such composition replace each b_i with one black (B) ball followed by b_i - 1 white (W) balls. Then drop the first black (B) ball. We then get a reversible non-palindromic string of length n-1 that has 5 black balls and n-6 white balls. This process, applied to the equivalent compositions n = b_1 + b_2 + b_3 + b_4 + b_5 + b_6 = b_6 + b_5 + b_4 + b_3 + b_2 + b_1, gives two strings of length n-1 with 5 black balls and n-6 white balls that are mirror images of each other. %C A032092 Hence, for n >= 2, a(n) = a_{k=6}(n) is also the number of reversible non-palindromic strings of length n-1 that have k-1 = 5 black balls and n-k = n-6 white balls. (Clearly, a(n) = a_{k=6}(n) > 0 only for n >= 7.) %C A032092 (End) %H A032092 Colin Barker, <a href="/A032092/b032092.txt">Table of n, a(n) for n = 7..1000</a> %H A032092 C. G. Bower, <a href="/transforms2.html">Transforms (2)</a> %H A032092 Pieter Moree, <a href="http://dx.doi.org/10.1016/j.disc.2005.03.004">The formal series Witt transform</a>, Discr. Math. no. 295 vol. 1-3 (2005) 143-160. - _R. J. Mathar_, Nov 08 2008 %H A032092 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-8,6,6,-8,0,3,-1). %F A032092 "BHK[ 6 ]" (reversible, identity, unlabeled, 6 parts) transform of 1, 1, 1, 1, ... %F A032092 G.f.: x^7*(3+x^2)/((1-x)^6*(1+x)^3). - _R. J. Mathar_, Nov 08 2008 %F A032092 From _Colin Barker_, Mar 07 2015: (Start) %F A032092 a(n) = (2*n^5-30*n^4+170*n^3-480*n^2+728*n-480)/480 if n is even. %F A032092 a(n) = (2*n^5-30*n^4+170*n^3-450*n^2+548*n-240)/480 if n is odd. %F A032092 (End) %F A032092 From _Petros Hadjicostas_, May 19 2018: (Start) %F A032092 a(n) = (1/2)*(binomial(n-1, n-6) - binomial((n/2)-1, (n-6)/2)) if n is even. %F A032092 a(n) = (1/2)*binomial(n-1, n-6) if n is odd. %F A032092 G.f.: (1/2)*((x/(1-x))^6 - (x^2/(1-x^2))^3). %F A032092 These formulae agree with the above formulae by R. J. Mathar and C. Barker. %F A032092 (End) %e A032092 From _Petros Hadjicostas_, May 19 2018: (Start) %e A032092 For n=7, we have the following 3 reversible non-palindromic compositions with 6 parts of n: 1+1+1+1+1+2 (= 2+1+1+1+1+1), 1+1+1+1+2+1 (= 1+2+1+1+1+1), and 1+1+1+2+1+1 (= 1+1+2+1+1+1). Using the process described in the comments, we get the following reversible non-palindromic strings with 5 black balls and n-6 = 1 white balls: BBBBBW (= WBBBBB), BBBBWB (= BWBBBB), and BBBWBB (= BBWBBB). %e A032092 For n=8, we get the following 9 compositions and 9 corresponding strings: %e A032092 1+1+1+1+1+3 <-> BBBBBWW %e A032092 1+1+1+1+3+1 <-> BBBBWWB %e A032092 1+1+1+3+1+1 <-> BBBWWBB %e A032092 1+1+1+1+2+2 <-> BBBBWBW %e A032092 1+1+1+2+1+2 <-> BBBWBBW %e A032092 1+1+2+1+1+2 <-> BBWBBBW %e A032092 1+2+1+1+1+2 <-> BWBBBBW %e A032092 1+1+1+2+2+1 <-> BBBWBWB %e A032092 1+1+2+1+2+1 <-> BBWBBWB %e A032092 (End) %t A032092 LinearRecurrence[{3,0,-8,6,6,-8,0,3,-1},{3,9,28,60,126,226,396,636,1001},50] (* _Harvey P. Dale_, Mar 19 2017 *) %t A032092 f[n_] := Binomial[n - 1, n - 6]/2 - If[ OddQ@ n, 0, Binomial[(n/2) - 1, (n - 6)/2]/2]; Array[a, 40, 7] (* or *) %t A032092 CoefficientList[ Series[(x^7 (x^2 + 3))/((x - 1)^6 (x + 1)^3), {x, 0, 46}], x] (* _Robert G. Wilson v_, May 20 2018 *) %o A032092 (PARI) Vec(x^7*(3+x^2)/((1-x)^6*(1+x)^3) + O(x^100)) \\ _Colin Barker_, Mar 07 2015 %Y A032092 Cf. A002620, A006584, A032091, A032093, A032094, A282011. %K A032092 nonn,easy %O A032092 7,1 %A A032092 _Christian G. Bower_