This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A032129 #10 Aug 30 2018 15:21:36 %S A032129 1,1,2,4,9,21,55,146,413,1194,3553,10756,33134,103273,325484,1034734, %T A032129 3314870,10688513,34662777,112976023,369876832,1215811262,4010932603, %U A032129 13275356936,44070010202,146698487202,489550622528,1637472527602,5488829461525,18435194140301 %N A032129 Number of dyslexic rooted planar trees with n nodes. %H A032129 Andrew Howroyd, <a href="/A032129/b032129.txt">Table of n, a(n) for n = 1..200</a> %H A032129 C. G. Bower, <a href="/transforms2.html">Transforms (2)</a> %H A032129 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %F A032129 "DIK" (bracelet, indistinct, unlabeled) transform of A032128 (shifted right one place). %o A032129 (PARI) %o A032129 BIK(p)={(1/(1-p) + (1+p)/subst(1-p, x, x^2))/2} %o A032129 DIK(p,n)={(sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d))) + ((1+p)^2/(1-subst(p, x, x^2))-1)/2)/2} %o A032129 seq(n)={my(p=O(1));for(i=1, n-1, p=BIK(x*p)); Vec(1+DIK(x*p, n))} \\ _Andrew Howroyd_, Aug 30 2018 %Y A032129 Cf. A032128. %K A032129 nonn %O A032129 1,3 %A A032129 _Christian G. Bower_ %E A032129 Terms a(28) and beyond from _Andrew Howroyd_, Aug 30 2018