cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032170 "CHK" (necklace, identity, unlabeled) transform of 1, 2, 3, 4, ...

This page as a plain text file.
%I A032170 #90 Aug 18 2025 23:36:58
%S A032170 1,2,5,10,24,50,120,270,640,1500,3600,8610,20880,50700,124024,304290,
%T A032170 750120,1854400,4600200,11440548,28527320,71289000,178526880,
%U A032170 447910470,1125750120,2833885800,7144449920,18036373140,45591631800,115381697740,292329067800
%N A032170 "CHK" (necklace, identity, unlabeled) transform of 1, 2, 3, 4, ...
%C A032170 Apparently, for n > 2, the same as A072337. - _Ralf Stephan_, Feb 01 2004
%C A032170 a(n) is the number of prime period-n periodic orbits of Arnold's cat map. - _Bruce Boghosian_, Apr 26 2009
%C A032170 From _Petros Hadjicostas_, Nov 17 2017: (Start)
%C A032170 A first proof of the g.f., given below, can be obtained using the first of _Vladeta Jovovic_'s formulae. If b(n) = A004146(n), then B(x) = Sum_{n >= 1} b(n)*x^n = x*(1 + x)/((1 - x)*(1 - 3*x + x^2)) (see the documentation for sequence A004146). From Jovovich's first formula, A(x) = Sum_{n >= 1} a(n)*x^n = Sum_{n >= 1} (1/n)*Sum_{d | n} mu(d)*b(n/d)*x^n. Letting m = n/d, we get A(x) = Sum_{d >= 1} (mu(d)/d)*Sum_{m >= 1} b(m)*(x^d)^m/m = Sum_{d >= 1} (mu(d)/d)*f(x^d), where f(y) = Sum_{m >= 1} b(m)*y^m/m = int(B(w)/w, w = 0..y) = int((1 + w)/((1 - w)*(1 - 3*w + w^2)), w = 0..y) = log((1 - y)^2/(1 - 3*y + y^2)) for |y| < (3 - sqrt(5))/2.
%C A032170 A second proof of the g.f. can be obtained using C. G. Bower's definition of the CHK transform of a sequence (e(n): n>=1) with g.f. E(x) (see the links below). If (c_k(n): n >= 1) = CHK_k(e(n): n >= 1), then (c_k(n): n >= 1) = (1/k)*(MOEBIUS*AIK)_k (e_n: n >= 1) = (1/k)*Sum_{d | gcd(n,k)} mu(d)*AIK_{k/d}(e(n/d): n multiple of d), where the * between MOEBIUS and AIK denotes Dirichlet convolution and (d_k(n): n >= 1) = AIK_k(e(n): n >= 1) has g.f. E(x)^k. (There is a typo in the given definition of CHK in the link.)
%C A032170 If C(x) is the g.f. of CHK(e(n): n >= 1) = Sum_{k = 1..n} CHK_k(e(n): n >= 1), then C(x) = Sum_{n>=1} Sum_{k = 1..n} c_k(n)*x^n = Sum_{k >= 1} (1/k) Sum_{n >= k} Sum_{d | gcd(n,k)} mu(d)*d_{k/d}(n/d)*x^n. Letting m = n/d and s = k/d and using the fact that E(0) = 0, we get C(x) = Sum_{d >= 1} (mu(d)/d)*Sum_{s >= 1} (1/s)*Sum_{m >= s} d_s(m)*(x^d)^m = Sum_{d >= 1} (mu(d)/d)*Sum_{s >= 1} E(x^d)^s. Thus, C(x) = -Sum_{d >= 1} (mu(d)/d)*log(1 - E(x^d)).
%C A032170 For the sequence (e(n): n >= 1) = (n: n >= 1), we have E(x) = Sum_{n>=1} n*x^n = x/(1 - x)^2, and thus A(x) = C(x) = -Sum_{d >= 1} (mu(d)/d)*log(1 - x/(1-x)^2), from which we can easily get the g.f. given in the formula section.
%C A032170 Apparently, for this sequence and for sequences A032165, A032166, A032167, the author assumes that C(0) = 0 (i.e., he assumes the CHK transform has no constant term), while for sequences A032164, A108529, and possibly others, he assumes that the CHK transform starts with the constant term 1 (i.e., he assumes C(x) = 1 - Sum_{d >= 1} (mu(d)/d)*log(1 - E(x^d))). (End)
%C A032170 From _Petros Hadjicostas_, Jul 13 2020: (Start)
%C A032170 We elaborate further on _Michel Marcus_'s claim below. Consider his sequence (b(n): n >= 1) with b(1) = 3 and b(n) = a(n) for n >= 2.
%C A032170 Using the identity -Sum_{k >= 1} (mu(k)/k)*log(1 - x^k) = x for |x| < 1 and the g.f. of (a(n): n >= 1) below, we see that Sum_{n >= 1} b(n)*x^n = 3*x - a(1)*x + Sum_{n >= 1} a(n)*x^n = 2*x + Sum_{k >= 1} (mu(k)/k)*(2*log(1 - x^k) - log(1 - 3*x^k + x^(2*k))) = -Sum_{k >= 1} (mu(k)/k)*log(1 - 3*x^k + x^(2*k)).
%C A032170 Following Kam Cheong Au (2020), let d(w,N) be the dimension of the Q-span of weight w and level N of colored multiple zeta values (CMZV). Here Q are the rational numbers.
%C A032170 Deligne's bound says that d(w,N) <= D(w,N), where 1 + Sum_{w >= 1} D(w,N)*t^w = (1 - a*t + b*t^2)^(-1) when N >= 3, where a = phi(N)/2 + omega(N) and b = omega(N) - 1 (with omega(N) being the number of distinct primes of N).
%C A032170 For N = 6, a = phi(6)/2 + omega(6) = 2/2 + 2 = 3 and b = omega(6) - 1 = 1. It follows that D(w, N=6) = A001906(w+1) = Fibonacci(2*(w+1)).
%C A032170 For some reason, Kam Cheong Au (2020) assumes Deligne's bound is tight, i.e., d(w,N) = D(w,N). He sets Sum_{w >= 1} c(w,N)*t^w = log(1 + Sum_{w >= 1} d(w,N)*t^w) = log(1 + Sum_{w >= 1} D(w,N)*t^w) = -log(1 - a*t + b*t^2) for N >= 3.
%C A032170 For N = 6, we get that c(w, N=6) = A005248(w)/w.
%C A032170 He defines d*(w,N) = Sum_{k | w} (mu(k)/k)*c(w/k,N) to be the "number of primitive constants of weight w and level N". (Using the terminology of A113788, we may perhaps call d*(w,N) the number of irreducible colored multiple zeta values at weight w and level N.)
%C A032170 Using standard techniques of the theory of g.f.'s, we can prove that Sum_{w >= 1} d*(w,N)*t^w = Sum_{s >= 1} (mu(s)/s) Sum_{k >= 1} c(k,N)*(t^s)^k = -Sum_{s >= 1} (mu(s)/s)*log(1 - a*t^s + b*t^(2*s)).
%C A032170 For N = 6, we saw that a = 3 and b = 1, and hence d*(w, N=6) = b(w) for w >= 1 (as claimed by _Michel Marcus_ below). See Table 1 on p. 6 in Kam Cheong Au (2020). (End)
%H A032170 Michael De Vlieger, <a href="/A032170/b032170.txt">Table of n, a(n) for n = 1..2400</a>
%H A032170 Kam Cheong Au, <a href="https://arxiv.org/abs/2007.03957">Evaluation of one-dimensional polylogarithmic integral, with applications to infinite series</a>, arXiv:2007.03957 [math.NT], 2020. See line N = 6 in Table 1 (p. 6).
%H A032170 C. G. Bower, <a href="/transforms2.html">Transforms (2)</a>.
%H A032170 Y. Puri and T. Ward, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL4/WARD/short.html">Arithmetic and growth of periodic orbits</a>, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
%H A032170 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ArnoldsCatMap.html">Arnold's cat map</a>.
%H A032170 Wikipedia, <a href="http://en.wikipedia.org/wiki/Arnold&#39;s_cat_map">Arnold's cat map</a>.
%H A032170 <a href="/index/Lu#Lyndon">Index entries for sequences related to Lyndon words</a>
%F A032170 a(n) = (1/n)*Sum_{d | n} mu(n/d)*A004146(d). - _Vladeta Jovovic_, Feb 15 2003
%F A032170 Inverse EULER transform of Fibonacci(2*n). - _Vladeta Jovovic_, May 04 2006
%F A032170 G.f.: Sum_{n >= 1} (mu(n)/n)*f(x^n), where f(y) = log((1 - y)^2/(1 - 3*y + y^2)). - _Petros Hadjicostas_, Nov 17 2017
%F A032170 It appears that the sequence b(1) = 3, b(n) = a(n) for n >= 2 is related to the rational sequence (c(w, N=6): w >= 1) = (A005248(w)/w: w >= 1) whose g.f. is log(1/(1 - a*t + b*t^2)), where a = phi(N)/2 + omega(N) and b = omega(N) - 1 when N = 6, where phi is A000010 and omega is A001221. See Kam Cheong Au (2020). - _Michel Marcus_, Jul 13 2020 [Edited by _Petros Hadjicostas_, Jul 13 2020]
%t A032170 Table[DivisorSum[n, MoebiusMu[n/#] (LucasL[2 #] - 2) &]/n, {n, 31}] (* _Michael De Vlieger_, Nov 18 2017 *)
%Y A032170 Cf. A000010, A001221, A001906, A004146, A032164, A032165, A032166, A032167, A032198, A005248, A108529, A113788.
%K A032170 nonn
%O A032170 1,2
%A A032170 _Christian G. Bower_