This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A032200 #15 Sep 11 2018 05:01:40 %S A032200 1,1,2,4,9,20,51,128,345,940,2632,7450,21434,62174,182146,537369, %T A032200 1596133,4767379,14312919,43162856,130695821,397184252,1211057426, %U A032200 3703794849,11358759346,34923477315,107627138308,332404636811 %N A032200 Number of rooted compound windmills (mobiles) of n nodes. %C A032200 Also the number of locally necklace plane trees with n nodes, where a plane tree is locally necklace if the sequence of branches directly under any given node is lexicographically minimal among its cyclic permutations. - _Gus Wiseman_, Sep 05 2018 %D A032200 F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 241 (3.3.84). %H A032200 Andrew Howroyd, <a href="/A032200/b032200.txt">Table of n, a(n) for n = 1..200</a> %H A032200 C. G. Bower, <a href="/transforms2.html">Transforms (2)</a> %H A032200 <a href="/index/Mo#mobiles">Index entries for sequences related to mobiles</a> %F A032200 Shifts left under "CIK" (necklace, indistinct, unlabeled) transform. %e A032200 From _Gus Wiseman_, Sep 05 2018: (Start) %e A032200 The a(5) = 9 locally necklace plane trees: %e A032200 ((((o)))) %e A032200 (((oo))) %e A032200 ((o(o))) %e A032200 (o((o))) %e A032200 ((o)(o)) %e A032200 ((ooo)) %e A032200 (o(oo)) %e A032200 (oo(o)) %e A032200 (oooo) %e A032200 (End) %t A032200 neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; %t A032200 neckplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[neckplane/@c],neckQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; %t A032200 Table[Length[neckplane[n]],{n,10}] (* _Gus Wiseman_, Sep 05 2018 *) %o A032200 (PARI) %o A032200 CIK(p,n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))} %o A032200 seq(n)={my(p=O(1));for(i=1, n, p=1+CIK(x*p, i)); Vec(p)} \\ _Andrew Howroyd_, Jun 20 2018 %Y A032200 Cf. A029768, A038037, A055340. %Y A032200 Cf. A000108, A007853, A032171, A254040, A304173, A304175, A317852. %K A032200 nonn,eigen %O A032200 1,3 %A A032200 _Christian G. Bower_