This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A032241 #29 Sep 12 2019 21:36:47 %S A032241 4,6,4,15,72,266,1044,3780,14056,51132,188604,693845,2572920,9566046, %T A032241 35758628,134134080,505159200,1908539864,7233104844,27486455049, %U A032241 104713295712,399817073946,1529746919604 %N A032241 Number of identity bracelets of n beads of 4 colors. %C A032241 For n>2 also number of asymmetric bracelets with n beads of four colors. - _Herbert Kociemba_, Nov 29 2016 %H A032241 Andrew Howroyd, <a href="/A032241/b032241.txt">Table of n, a(n) for n = 1..200</a> %H A032241 C. G. Bower, <a href="/transforms2.html">Transforms (2)</a> %H A032241 F. Ruskey, <a href="http://combos.org/necklace">Necklaces, Lyndon words, De Bruijn sequences, etc.</a> %H A032241 F. Ruskey, <a href="/A000011/a000011.pdf">Necklaces, Lyndon words, De Bruijn sequences, etc.</a> [Cached copy, with permission, pdf format only] %H A032241 <a href="/index/Br#bracelets">Index entries for sequences related to bracelets</a> %F A032241 "DHK" (bracelet, identity, unlabeled) transform of 4, 0, 0, 0... %F A032241 From _Herbert Kociemba_, Nov 29 2016: (Start) %F A032241 More generally, gf(k) is the g.f. for the number of asymmetric bracelets with n beads of k colors. %F A032241 gf(k): Sum_{n>=1} mu(n)*( -log(1-k*x^n)/n - Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)) )/2. (End) %t A032241 m = 4; (* asymmetric bracelets of n beads of m colors *) Table[Sum[MoebiusMu[d] (m^(n/d)/n - If[OddQ[n/d], m^((n/d + 1)/2), ((m + 1) m^(n/(2 d))/2)]), {d, Divisors[n]}]/2, {n, 3, 20}] (* _Robert A. Russell_, Mar 18 2013 *) %t A032241 mx=40;gf[x_,k_]:=Sum[MoebiusMu[n]*(-Log[1-k*x^n]/n-Sum[Binomial[k,i]x^(n i),{i,0,2}]/(1-k x^(2n)))/2,{n,mx}];ReplacePart[Rest[CoefficientList[Series[gf[x,4],{x,0,mx}],x]],{1->4,2->6}] (* _Herbert Kociemba_, Nov 29 2016 *) %o A032241 (PARI) a(n)={if(n<3, binomial(4, n), sumdiv(n, d, moebius(n/d)*(4^d/n - if(d%2, 4^((d+1)/2), 5*4^(d/2)/2)))/2)} \\ _Andrew Howroyd_, Sep 12 2019 %Y A032241 Column k=4 of A309528 for n >= 3. %K A032241 nonn %O A032241 1,1 %A A032241 _Christian G. Bower_