This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A032276 #55 May 05 2021 00:18:53 %S A032276 5,15,35,120,377,1505,5895,25395,110085,493131,2227275,10196680, %T A032276 46989185,218102685,1017448143,4768969770,22440372245,105966797755, %U A032276 501938733555,2384200683816,11353290089305 %N A032276 Number of bracelets (turnover necklaces) with n beads of 5 colors. %C A032276 From _Petros Hadjicostas_, Sep 01 2018: (Start) %C A032276 The DIK transform of the sequence (c(n): n >= 1), with g.f. C(x) = Sum_{n >= 1} c(n)*x^n, has g.f. -(1/2)*Sum_{m >= 1} (phi(m)/m))*log(1-C(x^m)) + (1 + C(x))^2/(4*(1-C(x^2))) - 1/4. %C A032276 Here, c(1) = 5 and c(n) = 0 for n >= 2, and thus, C(x) = 5*x. Substituting this to the above g.f., we get that the g.f. of the current sequence is A(x) = Sum_{n >= 1} a(n)*x^n = -(1/2)*Sum_{m >= 1} (phi(m)/m))*log(1-5*x^m) + (1 + 5*x)^2/(4*(1-5*x^2)) - 1/4. This agrees with _Herbert Kociemba_'s g.f. below except for an extra 1 because (1 + (1+5*x+10*x^2)/(1-5*x^2))/2 = 1 + (1 + 5*x)^2/(4*(1-5*x^2)) - 1/4. %C A032276 (End) %H A032276 C. G. Bower, <a href="/transforms2.html">Transforms (2)</a> %H A032276 F. Ruskey, <a href="http://combos.org/necklace">Necklaces, Lyndon words, De Bruijn sequences, etc.</a> %H A032276 F. Ruskey, <a href="/A000011/a000011.pdf">Necklaces, Lyndon words, De Bruijn sequences, etc.</a> [Cached copy, with permission, pdf format only] %H A032276 M. Taniguchi, H. Du, and J. S. Lindsey, <a href="https://doi.org/10.1021/ci400175f">Enumeration of virtual libraries of combinatorial modular macrocyclic (bracelet, necklace) architectures and their linear counterparts</a>, Journal of Chemical Information and Modeling, 53 (2013), 2203-2216. %H A032276 <a href="/index/Br#bracelets">Index entries for sequences related to bracelets</a> %F A032276 "DIK" (bracelet, indistinct, unlabeled) transform of 5, 0, 0, 0, ... %F A032276 a(n) = A081720(n,5), n >= 1. - _Wolfdieter Lang_, Jun 03 2012 %F A032276 G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 5*x^n)/n + (1+5*x+10*x^2)/(1-5*x^2))/2. - _Herbert Kociemba_, Nov 02 2016 %F A032276 a(n) = (3/2)*5^(n/2) + (1/(2*n))*Sum_{d|n} phi(n/d)*5^d, if n is even, and = (1/2)*5^((n+1)/2) + (1/(2*n))*Sum_{d|n} phi(n/d)*5^d, if n is odd. - _Petros Hadjicostas_, Sep 01 2018 %F A032276 a(n) = (A001869(n) + A056487(n+1)) / 2 = A278641(n) + A056487(n+1) = A001869(n) - A278641(n). - _Robert A. Russell_, Oct 13 2018 %F A032276 a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))*Sum_{d divides n} phi(d)*k^(n/d), where k=5 is the maximum number of colors. - _Richard L. Ollerton_, May 04 2021 %F A032276 a(n) = (k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/(2*n))*Sum_{i=1..n} k^gcd(n,i), where k=5 is the maximum number of colors. (See A051137.) - _Richard L. Ollerton_, May 04 2021 %e A032276 For n=2, the 15 bracelets are AA, AB, AC, AD, AE, BB, BC, BD, BE, CC, CD, CE, DD, DE, and EE. - _Robert A. Russell_, Sep 24 2018 %t A032276 mx=40;CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-5*x^n]/n,{n,mx}]+(1+5 x+10 x^2)/(1-5 x^2))/2,{x,0,mx}],x] (* _Herbert Kociemba_, Nov 02 2016 *) %t A032276 k=5; Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) + (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}] (* _Robert A. Russell_, Sep 24 2018 *) %Y A032276 Cf. A081720. %Y A032276 Column 5 of A051137. %Y A032276 Cf. A001869 (oriented), A056487 (achiral), A278641 (chiral). %K A032276 nonn %O A032276 1,1 %A A032276 _Christian G. Bower_