This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A032294 #33 Apr 30 2019 22:08:04 %S A032294 3,3,7,15,36,79,195,477,1209,3168,8415,22806,62412,172887,481552, %T A032294 1351485,3808080,10780653,30615351,87226932,249144506,713378655, %U A032294 2046856563,5884468110,16946569332,48883597728,141217159239 %N A032294 Number of aperiodic bracelets (turnover necklaces) with n beads of 3 colors. %H A032294 C. G. Bower, <a href="/transforms2.html">Transforms (2)</a> %H A032294 F. Ruskey, <a href="http://combos.org/necklace">Necklaces, Lyndon words, De Bruijn sequences, etc.</a> %H A032294 F. Ruskey, <a href="/A000011/a000011.pdf">Necklaces, Lyndon words, De Bruijn sequences, etc.</a> [Cached copy, with permission, pdf format only] %H A032294 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A032294 <a href="/index/Br#bracelets">Index entries for sequences related to bracelets</a> %F A032294 MOEBIUS transform of A027671. %F A032294 From _Herbert Kociemba_, Nov 28 2016: (Start) %F A032294 More generally, gf(k) is the g.f. for the number of bracelets with primitive period n and beads of k colors. %F A032294 gf(k): Sum_{n>=1} mu(n)*( -log(1-k*x^n)/n + Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)) )/2. (End) %t A032294 mx=40;gf[x_,k_]:=Sum[ MoebiusMu[n]*(-Log[1-k*x^n]/n+Sum[Binomial[k,i]x^(n i),{i,0,2}]/( 1-k x^(2n)))/2,{n,mx}]; CoefficientList[Series[gf[x,3],{x,0,mx}],x] (* _Herbert Kociemba_, Nov 28 2016 *) %o A032294 (PARI) a(x, k) = sum(n=1, 40, moebius(n) * (-log(1 - k*x^n )/n + sum(i=0, 2, binomial(k, i) * x^(n*i)) / (1 - k* x^(2*n)))/2); %o A032294 Vec(a(x, 3) + O(x^41)) \\ _Indranil Ghosh_, Mar 29 2017 %Y A032294 Column 3 of A276550. %K A032294 nonn %O A032294 1,1 %A A032294 _Christian G. Bower_