A032295 Number of aperiodic bracelets (turn over necklaces) with n beads of 4 colors.
4, 6, 16, 45, 132, 404, 1296, 4380, 15064, 53622, 192696, 703895, 2589300, 9606744, 35824088, 134297280, 505421340, 1909194056, 7234153416, 27489073899, 104717489748, 399827555604, 1529763696816
Offset: 1
Keywords
Links
- C. G. Bower, Transforms (2)
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- N. J. A. Sloane, Transforms
- Index entries for sequences related to bracelets
Crossrefs
Column 4 of A276550.
Programs
-
Mathematica
mx=40;gf[x_,k_]:=Sum[ MoebiusMu[n]*(-Log[1-k*x^n]/n+Sum[Binomial[k,i]x^(n i),{i,0,2}]/( 1-k x^(2n)))/2,{n,mx}]; CoefficientList[Series[gf[x,4],{x,0,mx}],x] (* Herbert Kociemba, Nov 28 2016 *)
Formula
MOEBIUS transform of A032275.
From Herbert Kociemba, Nov 28 2016: (Start)
More generally, gf(k) is the g.f. for the number of bracelets with primitive period n and beads of k colors.
gf(k): Sum_{n>=1} mu(n)*( -log(1-k*x^n)/n + Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)) )/2. (End)