This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A032296 #30 Apr 30 2019 14:53:28 %S A032296 5,10,30,105,372,1460,5890,25275,110050,492744,2227270,10195070, %T A032296 46989180,218096780,1017447736,4768944375,22440372240,105966686200, %U A032296 501938733550,2384200190580,11353290083380 %N A032296 Number of aperiodic bracelets (turnover necklaces) with n beads of 5 colors. %H A032296 C. G. Bower, <a href="/transforms2.html">Transforms (2)</a> %H A032296 F. Ruskey, <a href="http://combos.org/necklace">Necklaces, Lyndon words, De Bruijn sequences, etc.</a> %H A032296 F. Ruskey, <a href="/A000011/a000011.pdf">Necklaces, Lyndon words, De Bruijn sequences, etc.</a> [Cached copy, with permission, pdf format only] %H A032296 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A032296 <a href="/index/Br#bracelets">Index entries for sequences related to bracelets</a> %F A032296 MOEBIUS transform of A032276. %F A032296 From _Herbert Kociemba_, Nov 28 2016: (Start) %F A032296 More generally, gf(k) is the g.f. for the number of bracelets with primitive period n and beads of k colors. %F A032296 gf(k): Sum_{n>=1} mu(n)*( -log(1-k*x^n)/n + Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)) )/2. (End) %t A032296 mx=40;gf[x_,k_]:=Sum[ MoebiusMu[n]*(-Log[1-k*x^n]/n+Sum[Binomial[k,i]x^(n i),{i,0,2}]/( 1-k x^(2n)))/2,{n,mx}]; CoefficientList[Series[gf[x,5],{x,0,mx}],x] (* _Herbert Kociemba_, Nov 28 2016 *) %Y A032296 Column 5 of A276550. %K A032296 nonn %O A032296 1,1 %A A032296 _Christian G. Bower_