This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A032308 #36 Apr 12 2018 22:22:45 %S A032308 1,3,3,12,12,21,48,57,84,120,228,264,399,516,732,1119,1416,1884,2532, %T A032308 3324,4296,6168,7545,9984,12684,16500,20577,26688,34572,43032,54264, %U A032308 68232,84972,106176,131664,162507,205680,249888,308856,377796,465195,564024,691788,835572,1017768,1241040 %N A032308 Expansion of Product_{k>=1} (1 + 3*x^k). %C A032308 "EFK" (unordered, size, unlabeled) transform of 3,3,3,3,... %C A032308 Number of partitions into distinct parts of 3 sorts, see example. [_Joerg Arndt_, May 22 2013] %H A032308 Vaclav Kotesovec, <a href="/A032308/b032308.txt">Table of n, a(n) for n = 0..10000</a> %H A032308 C. G. Bower, <a href="/transforms2.html">Transforms (2)</a> %F A032308 G.f.: Product_{k>=1} (1 + 3*x^k). %F A032308 a(n) = (1/4) * [x^n] QPochammer(-3, x). - _Vladimir Reshetnikov_, Nov 20 2015 %F A032308 a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (4*sqrt(Pi)*n^(3/4)), where c = Pi^2/6 + log(3)^2/2 + polylog(2, -1/3) = 1.93937542076670895307727171917789144122... . - _Vaclav Kotesovec_, Jan 04 2016 %F A032308 G.f.: Sum_{i>=0} 3^i*x^(i*(i+1)/2)/Product_{j=1..i} (1 - x^j). - _Ilya Gutkovskiy_, Apr 12 2018 %e A032308 From _Joerg Arndt_, May 22 2013: (Start) %e A032308 There are a(5) = 21 partitions of 5 into distinct parts of 3 sorts (format P:S for part:sort): %e A032308 01: [ 1:0 4:0 ] %e A032308 02: [ 1:0 4:1 ] %e A032308 03: [ 1:0 4:2 ] %e A032308 04: [ 1:1 4:0 ] %e A032308 05: [ 1:1 4:1 ] %e A032308 06: [ 1:1 4:2 ] %e A032308 07: [ 1:2 4:0 ] %e A032308 08: [ 1:2 4:1 ] %e A032308 09: [ 1:2 4:2 ] %e A032308 10: [ 2:0 3:0 ] %e A032308 11: [ 2:0 3:1 ] %e A032308 12: [ 2:0 3:2 ] %e A032308 13: [ 2:1 3:0 ] %e A032308 14: [ 2:1 3:1 ] %e A032308 15: [ 2:1 3:2 ] %e A032308 16: [ 2:2 3:0 ] %e A032308 17: [ 2:2 3:1 ] %e A032308 18: [ 2:2 3:2 ] %e A032308 19: [ 5:0 ] %e A032308 20: [ 5:1 ] %e A032308 21: [ 5:2 ] %e A032308 (End) %p A032308 b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0, %p A032308 `if`(n=0, 1, b(n, i-1)+`if`(i>n, 0, 3*b(n-i, i-1)))) %p A032308 end: %p A032308 a:= n-> b(n$2): %p A032308 seq(a(n), n=0..60); # _Alois P. Heinz_, Aug 24 2015 %p A032308 # Alternatively: %p A032308 simplify(expand(QDifferenceEquations:-QPochhammer(-3,x,99),x)/4): %p A032308 seq(coeff(%,x,n), n=0..45); # _Peter Luschny_, Nov 17 2016 %t A032308 nmax = 40; CoefficientList[Series[Product[1 + 3*x^k, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 24 2015 *) %t A032308 nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*3^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 25 2015 *) %t A032308 (QPochhammer[-3, x]/4 + O[x]^58)[[3]] (* _Vladimir Reshetnikov_, Nov 20 2015 *) %o A032308 (PARI) N=66; x='x+O('x^N); Vec(prod(n=1,N, 1+3*x^n)) \\ _Joerg Arndt_, May 22 2013 %Y A032308 Cf. A000009, A032302, A261568, A261569. %K A032308 nonn %O A032308 0,2 %A A032308 _Christian G. Bower_ %E A032308 a(0) prepended and more terms added by _Joerg Arndt_, May 22 2013