cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032349 Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis), where each step is (2,1),(1,2) or (1,-1) and start with (2,1).

This page as a plain text file.
%I A032349 #55 Feb 23 2025 11:25:33
%S A032349 1,4,24,172,1360,11444,100520,911068,8457504,80006116,768464312,
%T A032349 7474561164,73473471344,728745517972,7284188537672,73301177482172,
%U A032349 742009157612608,7550599410874820,77193497566719320,792498588659426924
%N A032349 Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis), where each step is (2,1),(1,2) or (1,-1) and start with (2,1).
%C A032349 a(n) is the maximum number of distinct sets that can be obtained as complete parenthesizations of “S_1 union S_2 intersect S_3 union S_4 intersect S_5 union ... union S_{2*n}”, where n union and n-1 intersection operations alternate, starting with a union, and S_1, S_2, ... , S_{2*n} are sets. - _Alexander Burstein_, Nov 22 2023
%H A032349 G. C. Greubel, <a href="/A032349/b032349.txt">Table of n, a(n) for n = 1..950</a>
%H A032349 Emeric Deutsch, <a href="http://www.jstor.org/stable/2589192">Problem 10658</a>, American Math. Monthly, 107, 2000, 368-370.
%H A032349 Jun Yan, <a href="https://arxiv.org/abs/2501.01152">Lattice paths enumerations weighted by ascent lengths</a>, arXiv:2501.01152 [math.CO], 2025. See pp. 7, 11.
%F A032349 G.f.: z*A^2, where A is the g.f. of A027307.
%F A032349 a(n) = 2*Sum_{i=0..n-1} (2*n+i-1)!/(i!*(n-i-1)!*(n+i+1)!). - _Vladimir Kruchinin_, Oct 18 2011
%F A032349 D-finite with recurrence: n*(2*n-1)*a(n) = (28*n^2-65*n+36)*a(n-1) - (64*n^2-323*n+408)*a(n-2) - 3*(n-4)*(2*n-5)*a(n-3). - _Vaclav Kotesovec_, Oct 08 2012
%F A032349 a(n) ~ sqrt(45*sqrt(5)-100)*((11+5*sqrt(5))/2)^n/(5*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 08 2012
%F A032349 G.f. A(x) satisfies: A(x) = 1 + x * ( A(x) + sqrt(A(x)) )^2. - _Paul D. Hanna_, Jun 11 2016
%F A032349 From _Peter Bala_, May 07 2023: (Start)
%F A032349 n*(2*n-1)*(5*n-9)*a(n) = 2*(55*n^3-209*n^2+255*n-99)*a(n-1) + (n-3)*(2*n-3)*(5*n-4)*a(n-2) with a(1) = 1 and a(2) = 4.
%F A032349 G.f.: A(x) = series reversion of x*(1 - x)^2/(1 + x)^2. (End)
%e A032349 From _Alexander Burstein_, Feb 14 2025: (Start)
%e A032349 a(2) = 4 as the maximum number of distinct sets obtained as complete parenthesizations of S_1 u(nion) S_2 (i)n(tersect) S_3 u(nion) S_4:
%e A032349 S_1 u (S_2 n (S_3 u S_4)),
%e A032349 S_1 u ((S_2 n S_3) u S_4) = (S_1 u (S_2 n S_3)) u S_4,
%e A032349 (S_1 u S_2) n (S_3 u S_4),
%e A032349 ((S_1 u S_2) n S_3) u S_4. (End)
%t A032349 RecurrenceTable[{n*(2*n-1)*a[n] == (28*n^2-65*n+36)*a[n-1] - (64*n^2-323*n+408)*a[n-2] - 3*(n-4)*(2*n-5)*a[n-3],a[1]==1,a[2]==4,a[3]==24},a,{n,20}] (* _Vaclav Kotesovec_, Oct 08 2012 *)
%o A032349 (Maxima)
%o A032349 a(n):=2*sum((2*n+i-1)!/(i!*(n-i-1)!*(n+i+1)!),i,0,n-1); /* _Vladimir Kruchinin_, Oct 18 2011 */
%o A032349 (PARI) vector(30, n, 2*sum(k=0, n-1, (2*n+k-1)!/(k!*(n-k-1)!*(n+k+1)!))) \\ _Altug Alkan_, Oct 06 2015
%o A032349 (PARI) {a(n) = my(A=1); for(i=1,n, A = 1 + x*(A + sqrt(A +x*O(x^n)))^2); polcoeff(A,n)}
%o A032349 for(n=0,30, print1(a(n),", ")) \\ _Paul D. Hanna_, Jun 11 2016
%Y A032349 Convolution of A027307 with itself.
%Y A032349 Cf. A060628 diagonal(-6).
%K A032349 nonn,easy
%O A032349 1,2
%A A032349 _Emeric Deutsch_