This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A032428 #23 Jul 08 2025 19:36:13 %S A032428 1,99642,116294673,47152124264,11966116940238,2347836365864484, %T A032428 393938089395885894,59752013018382750024,8470841585571575617239, %U A032428 1146456994425541774291534,150221961163114696686151695,19239380962379456298762250416,2424371762015227695363084225932 %N A032428 Coefficients of Jacobi elliptic function c(5,m). %H A032428 A. Fransen, <a href="http://dx.doi.org/10.1090/S0025-5718-1981-0628708-X">Conjectures on the Taylor series expansion coefficients of the Jacobian elliptic function sn(n,k)</a>, Math. Comp., 37 (1981), 475-497. %H A032428 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a032/A032428.java">Java program</a> (github) %F A032428 a(n) = T(2*n+1,0,5) where T(1,0,0) = 1; T(n,i,j) = 0 if i+j < 0 or i+j > n/2; T(2*n,i,j) = (2*j+1) * T(2*n-1,i,j) + (2*i+2) * T(2*n-1,i+1,j-1) + (2*n-2*i-2*j+1) * T(2*n-1,i,j-1), and T(2*n+1,i,j) = (2*i+1) * T(2*n-1,i,j) + (2*j+2) * T(2*n,i-1,j+1) + (2*n-2*i-2*j+2) * T(2*n-1,i-1,j). - _Sean A. Irvine_, Jun 20 2020 %Y A032428 Cf. A060928 (5th lower diagonal). %K A032428 nonn %O A032428 5,2 %A A032428 _Simon Plouffe_ %E A032428 Offset corrected and more terms from _Sean A. Irvine_, Jun 20 2020