cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032429 Coefficients of Jacobi elliptic function c(6,m).

This page as a plain text file.
%I A032429 #22 Jul 08 2025 19:36:21
%S A032429 1,896803,2949965020,2504055894564,1171517154238290,
%T A032429 393938089395885894,107947764316226205276,25835579116799316507780,
%U A032429 5632500127524872577252027,1149330973559307337432235521,223559382769795167319093086664,41982964485265754951017173213880
%N A032429 Coefficients of Jacobi elliptic function c(6,m).
%H A032429 A. Fransen, <a href="http://dx.doi.org/10.1090/S0025-5718-1981-0628708-X">Conjectures on the Taylor series expansion coefficients of the Jacobian elliptic function sn(n,k)</a>, Math. Comp., 37 (1981), 475-497.
%F A032429 a(n) = T(2*n+1,0,6) where T(1,0,0) = 1; T(n,i,j) = 0 if i+j < 0 or i+j > n/2; T(2*n,i,j) = (2*j+1) * T(2*n-1,i,j) + (2*i+2) * T(2*n-1,i+1,j-1) + (2*n-2*i-2*j+1) * T(2*n-1,i,j-1), and T(2*n+1,i,j) = (2*i+1) * T(2*n-1,i,j) + (2*j+2) * T(2*n,i-1,j+1) + (2*n-2*i-2*j+2) * T(2*n-1,i-1,j). - _Sean A. Irvine_, Jun 20 2020
%Y A032429 Cf. A060928 (6th lower diagonal).
%K A032429 nonn
%O A032429 6,2
%A A032429 _Simon Plouffe_
%E A032429 Offset corrected and more terms from _Sean A. Irvine_, Jun 20 2020