cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032431 Coefficients of Jacobi elliptic function c(8,m).

This page as a plain text file.
%I A032431 #21 Jul 09 2022 11:08:13
%S A032431 1,72641337,1859539731885,6460701405171285,9412382749388124015,
%T A032431 8470841585571575617239,5632500127524872577252027,
%U A032431 3051808875538951440990525939,1429953329302734392093044646982,602297594518030428986818986545686,234170438234669757816987374536542702
%N A032431 Coefficients of Jacobi elliptic function c(8,m).
%H A032431 A. Fransen, <a href="http://dx.doi.org/10.1090/S0025-5718-1981-0628708-X">Conjectures on the Taylor series expansion coefficients of the Jacobian elliptic function sn(n,k)</a>, Math. Comp., 37 (1981), 475-497.
%F A032431 a(n) = T(2*n+1,0,8) where T(1,0,0) = 1; T(n,i,j) = 0 if i+j < 0 or i+j > n/2; T(2*n,i,j) = (2*j+1) * T(2*n-1,i,j) + (2*i+2) * T(2*n-1,i+1,j-1) + (2*n-2*i-2*j+1) * T(2*n-1,i,j-1), and T(2*n+1,i,j) = (2*i+1) * T(2*n-1,i,j) + (2*j+2) * T(2*n,i-1,j+1) + (2*n-2*i-2*j+2) * T(2*n-1,i-1,j). - _Sean A. Irvine_, Jun 20 2020
%Y A032431 Cf. A060628 (8th lower diagonal).
%K A032431 nonn
%O A032431 8,2
%A A032431 _Simon Plouffe_
%E A032431 Offset corrected and more terms from _Sean A. Irvine_, Jun 20 2020