This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A032436 #35 Jul 08 2025 19:36:36 %S A032436 1,1,1,2,1,1,1,3,1,2,1,2,4,1,1,3,1,2,5,3,1,2,1,1,2,6,1,4,3,3,1,1,2,7, %T A032436 3,1,1,2,4,1,1,2,8,1,4,1,3,3,5,1,1,4,9,3,2,5,1,5,1,1,4,3,2,10,1,5,1,1, %U A032436 3,8,2,1,1,1,2,11,3,1,5,6,4,2,4,3,1,1,1,7,12,5,2,3,2,1,9,4,5,7,1,1,6 %N A032436 Triangle of third-to-last man to survive in the Josephus problem of n men in a circle with every k-th killed, with 1 <= k <= n and n >= 3. %D A032436 W. W. R. Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th ed., New York: Dover, pp. 32-36, 1987. %D A032436 M. Kraitchik, "Josephus' Problem," Sec. 3.13 in Mathematical Recreations, New York: W. W. Norton, pp. 93-94, 1942. %D A032436 Eric W. Weisstein, The CRC Concise Encyclopedia in Mathematics, 2nd ed., Chapman and Hall/CRC, 2002. [The first 7 rows of the triangle appear on p. 1596 of this book under the topic "Josephus Problem".] %H A032436 W. W. R. Ball, <a href="http://www.gutenberg.org/files/26839/26839-pdf.pdf">Mathematical Recreations and Essays</a>, 4th ed., New York: The MacMillan Company, 1905 (see "Decimation" on pp. 19-20). %H A032436 Sean A. Irvine, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2020-June/020790.html">A032435 and A032436 Josephus problem data mismatch</a>, message in seqfan, June 2020. %H A032436 F. Jakóbczyk, <a href="https://doi.org/10.1017/S0017089500001919">On the generalized Josephus problem</a>, Glasow Math. J. 14(2) (1973), 168-173. [It contains algorithms that allow the identification of the original position of the third-to-last person to survive in Josephus problem.] %H A032436 M. Kraitchik, <a href="https://babel.hathitrust.org/cgi/pt?id=wu.89041209552&view=1up&seq=95">"Josephus' Problem"</a>, Sec. 3.13 in Mathematical Recreations, New York: W. W. Norton, pp. 93-94, 1942. [Available only in the USA through the <a href="https://www.hathitrust.org/">Hathi Trust Digital Library</a>.] %H A032436 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JosephusProblem.html">Josephus Problem</a>. [It contains a new, apparently corrected, triangle.] %H A032436 Wikipedia, <a href="https://en.wikipedia.org/wiki/Josephus_problem">Josephus problem</a>. %H A032436 <a href="/index/J#Josephus">Index entries for sequences related to the Josephus Problem</a> %e A032436 Triangle T(n,k) (with rows n >= 3 and columns k = 1..n) begins %e A032436 1, 1, 1; %e A032436 2, 1, 1, 1; %e A032436 3, 1, 2, 1, 2; %e A032436 4, 1, 1, 3, 1, 2; %e A032436 5, 3, 1, 2, 1, 1, 2; %e A032436 6, 1, 4, 3, 3, 1, 1, 2; %e A032436 7, 3, 1, 1, 2, 4, 1, 1, 2; %e A032436 8, 1, 4, 1, 3, 3, 5, 1, 1, 4; %e A032436 9, 3, 2, 5, 1, 5, 1, 1, 4, 3, 2; %e A032436 10, 1, 5, 1, 1, 3, 8, 2, 1, 1, 1, 2; %e A032436 11, 3, 1, 5, 6, 4, 2, 4, 3, 1, 1, 1, 7; %e A032436 ... %Y A032436 Cf. A032434, A032435. %K A032436 nonn,tabf %O A032436 3,4 %A A032436 _N. J. A. Sloane_