cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032437 Substrings from the right are prime numbers (using only odd digits different from 5).

This page as a plain text file.
%I A032437 #33 Feb 16 2025 08:32:36
%S A032437 3,7,13,17,37,73,97,113,137,173,197,313,317,337,373,397,773,797,937,
%T A032437 997,1373,1997,3137,3313,3373,3797,7937,9137,9173,9337,9397,13313,
%U A032437 33797,39397,79337,79397,91373,91997,99137,99173,99397,139397,379397
%N A032437 Substrings from the right are prime numbers (using only odd digits different from 5).
%C A032437 Primes p with decimal expansion d_1 d_2 d_3 ... d_k such that the digits d_i are 1, 3, 7, or 9, and deleting 1, 2, 3, up to k-1 leading digits also produces a prime. For example, 9173 is a term because all of 9173, 173, 73, and 3 are primes. - _N. J. A. Sloane_, Jun 28 2022
%H A032437 T. D. Noe, <a href="/A032437/b032437.txt">Table of n, a(n) for n = 1..58</a> [The complete list of terms]
%H A032437 C. Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_002.htm">Prime strings</a>
%H A032437 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TruncatablePrime.html">Truncatable Prime.</a>
%e A032437 173 is a term because 173, 73, and 3 are all primes. 371 is not a term because 371 and 1 are not primes. - _N. J. A. Sloane_, Jun 28 2022
%t A032437 Select[Prime[Range[33000]],SubsetQ[{1,3,7,9},IntegerDigits[#]]&&AllTrue[Mod[#,10^Range[ IntegerLength[ #]-1]],PrimeQ]&] (* _Harvey P. Dale_, Jun 28 2022 *)
%o A032437 (PARI) is(n)=my(d=digits(n)); for(i=1,n, if(!isprime(fromdigits(d[i..n])), return(0))); 1 \\ _Charles R Greathouse IV_, Jun 25 2017
%Y A032437 Cf. A033664, A024785, A020994, A024770, A052023, A052024, A052025, A050986, A050987.
%K A032437 nonn,fini,full,base,nice
%O A032437 1,1
%A A032437 _Carlos Rivera_
%E A032437 Single-digit terms added by _Eric W. Weisstein_.