This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A032447 #57 Oct 11 2019 15:19:15 %S A032447 1,2,3,4,6,5,8,10,12,7,9,14,18,15,16,20,24,30,11,22,13,21,26,28,36,42, %T A032447 17,32,34,40,48,60,19,27,38,54,25,33,44,50,66,23,46,35,39,45,52,56,70, %U A032447 72,78,84,90,29,58,31,62,51,64,68,80,96,102,120,37,57,63,74,76,108,114,126 %N A032447 Inverse function of phi( ). %C A032447 Arrange integers in order of increasing phi value; the phi values themselves form A007614. %C A032447 Inverse of sequence A064275 considered as a permutation of the positive integers. - _Howard A. Landman_, Sep 25 2001 %C A032447 In the array shown in the example section row no. n gives exactly the N values for which the cyclotomic polynomials cyclotomic(N,x) have degree A002202(n). - _Wolfdieter Lang_, Feb 19 2012. %D A032447 Sivaramakrishnan, The many facets of Euler's Totient, I. Nieuw Arch. Wisk. 4 (1986), 175-190. %H A032447 T. D. Noe, <a href="/A032447/b032447.txt">Table of n, a(n) for n = 1..10000</a> (Corrected by _Dana Jacobsen_, Mar 04 2019) %H A032447 D. Bressoud, <a href="http://www.macalester.edu/~bressoud/books/CNT.m">CNT.m</a> Computational Number Theory Mathematica package. %H A032447 H. Gupta, <a href="http://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a81_22.pdf">Euler’s totient function and its inverse</a>, Indian J. pure appl. Math., 12(1): 22-29(1981). %H A032447 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A032447 phi(1)=phi(2)=1, phi(3)=phi(4)=phi(6)=2, phi(5)=phi(8)=...=4, ... %e A032447 From _Wolfdieter Lang_, Feb 19 2012: (Start) %e A032447 Read as array a(n,m) with row length l(n):=A058277(v(n)) with v(n):= A002202(n), n>=1. a(n,m) = m-th element of the set {m from positive integers: phi(m)=v(n)} when read as an increasingly ordered list. %e A032447 l(n): 2, 3, 4, 4, 5, 2, 6, 6, 4, 5, ... %e A032447 n, v(n)\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 %e A032447 1, 1: 1 2 %e A032447 2, 2: 3 4 6 %e A032447 3, 4: 5 8 10 12 %e A032447 4, 6: 7 9 14 18 %e A032447 5, 8: 15 16 20 24 30 %e A032447 6, 10: 11 22 %e A032447 7, 12: 13 21 26 28 36 42 %e A032447 8, 16: 17 32 34 40 48 60 %e A032447 9, 18: 19 27 38 54 %e A032447 10, 20: 25 33 44 50 66 %e A032447 ... %e A032447 Row no. n=4: The cyclotomic polynomials cyclotomic(N,x) with values N = 7,9,14, and 18 have degree 6, and only these. %e A032447 (End) %t A032447 Needs["CNT`"]; Flatten[Table[PhiInverse[n], {n, 40}]] (* _T. D. Noe_, Oct 15 2012 *) %t A032447 Take[Values@ PositionIndex@ Array[EulerPhi, 10^3], 15] // Flatten (* _Michael De Vlieger_, Dec 29 2017 *) %t A032447 SortBy[Table[{n,EulerPhi[n]},{n,150}],Last][[All,1]] (* _Harvey P. Dale_, Oct 11 2019 *) %o A032447 (PARI) %o A032447 M = 9660; /* choose a term of A036913 */ %o A032447 v = vector(M, n, [eulerphi(n),n] ); %o A032447 v = vecsort(v, (x, y)-> if( x[1]-y[1]!=0, sign(x[1]-y[1]), sign(x[2]-y[2]) ) ); %o A032447 P=eulerphi(M); %o A032447 v = select( x->(x[1]<=P), v ); %o A032447 /* A007614 = vector(#v,n, v[n][1] ) */ %o A032447 A032447 = vector(#v,n, v[n][2] ) %o A032447 /* for (n=1,#v, print(n," ", A032447[n]) ); */ /* b-file */ %o A032447 /* _Joerg Arndt_, Oct 06 2012 */ %o A032447 (Haskell) %o A032447 import Data.List.Ordered (insertBag) %o A032447 a032447 n = a032447_list !! (n-1) %o A032447 a032447_list = f [1..] a002110_list [] where %o A032447 f xs'@(x:xs) ps'@(p:ps) us %o A032447 | x < p = f xs ps' $ insertBag (a000010' x, x) us %o A032447 | otherwise = map snd vs ++ f xs' ps ws %o A032447 where (vs, ws) = span ((<= a000010' x) . fst) us %o A032447 -- _Reinhard Zumkeller_, Nov 22 2015 %o A032447 (Perl) use ntheory ":all"; my($n,$k,$i,@v)=(10000,1,0); push @v,inverse_totient($k++) while @v<$n; $#v=$n-1; say ++$i," $_" for @v; # _Dana Jacobsen_, Mar 04 2019 %Y A032447 Cf. A000010, A007614. %Y A032447 Cf. A002110, A064275. %K A032447 nonn,easy,nice,look %O A032447 1,2 %A A032447 Ursula Gagelmann (gagelmann(AT)altavista.net) %E A032447 Example corrected, more terms and program from _Olivier Gérard_, Feb 1999